Concerns Raised on Blood Group Determinants in Plasma Membrane Interaction of the SARS-CoV-2

The SARS-CoV-2 pandemic has resulted in the generation of evolutionary-related variants. The S-protein of the B.1.1.7 variant (deletion N-terminal domain (NTD) His69Val70Tyr144) may contribute to altered infectivity. These mutations may have been presaged by animal mutations in minks housed in mink farms that according to the present analysis by modelling of protein ligand docking altered a high affinity binding site in the S-protein NTD. These mutants likely occurred only sporadically in humans. Tissue-adaptations and the size of the mink relative to the infected human population size back then may have comparatively increased the relative mutation rate. Simple, multi-threaded automated docking that is widely available, assigns increased binding of the blood type II A antigen to the SARS-Cov-2 S-protein NTD of B.1.1.7 with an overall increased docking interaction of blood group A harbouring glycolipids relative to group B or H (H, p=0.04). The top scoring glycan is identified as a DSGG (also classified as sialosyl-MSGG or disialosyl-Gb5) that may compete with heparin, which is similar to heparan sulfate linked to proteinaceous receptors on the tissue surface. Other glycolipids are found to interact with lower affinity, except long ligands that have suitable ligand binding poses to match the curved binding pocket..

Medienart:

Preprint

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Preprints.org - (2021) vom: 13. Apr. Zur Gesamtaufnahme - year:2021

Sprache:

Englisch

Beteiligte Personen:

Fiedler, Klaus [VerfasserIn]

Links:

Volltext [kostenfrei]

Themen:

540
Chemistry

doi:

10.20944/preprints202103.0460.v3

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

preprintsorg02017053X