DoE Directed Optimization, Development and Characterization of Resveratrol Loaded Nlc System for the Nose to Brain Delivery in the Management of Glioblastoma Multiforme

Abstract Nose to brain delivery of resveratrol can be a very useful method to overcome the limitations possessed by conventional delivery approaches namely, hepatic metabolism, low bioavailability and half-life of resveratrol, and presence of blood-brain barrier (BBB). The objective of this research work was to develop and optimize the resveratrol-loaded NLCs and coating these carriers with chitosan to increase the residence time of the formulation into the nasal cavity and enhanced permeation across the nasal mucosa. Three CQAs (Particle size, Entrapment efficiency, and PDI), and CMAs (Solid: total lipid concentration, surfactant concentration, and bioactive amount) were selected and the formulation was optimized using the Box-Behnken design (BBD) approach. The optimized batch was evaluated for physicochemical characteristics such as particle size (168.24 ± 8.24 nm), PDI (0.151 ± 0.003), and entrapment efficiency (77.42 ± 3.76 %). This optimized batch was coated with chitosan, which produced coated NLCs with a particle size of 317.7 ± 15.9 nm, and PDI was 0.089 ± 0.009. The morphological study using TEM confirmed the spherical shape, size, and surface coating of the NLCs. Furthermore, both the uncoated and coated particles were analyzed for in vitro resveratrol release, ex vivo diffusion study, and antioxidant assay. NLCs was founded to show sustained in vitro release characteristic, and enhanced bioactive diffusion across the nasal mucosa compared to the bioactive solution of resveratrol. The antioxidant assay revealed that the antioxidant property of resveratrol was intact in the formulation, and a slight increase in antioxidant activity of the formulation was also observed which may be due to the presence of sesame oil in the formulation. These results indicated that the chitosan-coated NLCs can be used to deliver therapeutic moieties more efficiently via the nose to brain drug delivery..

Medienart:

Preprint

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

ResearchSquare.com - (2021) vom: 08. Juni Zur Gesamtaufnahme - year:2021

Sprache:

Englisch

Beteiligte Personen:

Kumar, Nitish [VerfasserIn]
Gupta, Ghanshyam Das [VerfasserIn]
Arora, Daisy [VerfasserIn]

Links:

Volltext [kostenfrei]

doi:

10.21203/rs.3.rs-572155/v1

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XRA034006990