The Structural Landscape of SARS-CoV-2 Main Protease: Hints for Inhibitor Search.

In 2019, an outbreak occurred which resulted in a global pandemic. The causative agent of this serious global health threat was a coronavirus similar to the agent of SARS, referred to as SARS-CoV-2. In this work an analysis of the available structures of the SARS-CoV-2 main protease has been performed. From a data set of crystallographic structures the dynamics of the protease has been obtained. Furthermore, a comparative analysis of the structures of SARS-CoV-2 with those of the main protease of the coronavirus responsible of SARS (SARS-CoV) was carried out. The results of these studies suggest that, although main proteases of SARS-CoV and SARS-CoV-2 are similar at the backbone level, some plasticity at the substrate binding site can be observed. The consequences of these structural aspects on the search for effective inhibitors of these enzymes are discussed, with a focus on already known compounds. The results obtained show that compounds containing an oxirane ring could be considered as inhibitors of the main protease of SARS-CoV-2..

Medienart:

Preprint

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

chemRxiv.org - (2021) vom: 18. Nov. Zur Gesamtaufnahme - year:2021

Sprache:

Englisch

Beteiligte Personen:

Palese, Luigi Leonardo [VerfasserIn]

Links:

Volltext [kostenfrei]

Themen:

540
Chemistry

doi:

10.26434/chemrxiv.12209744

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XCH017761433