Fine-Grained Forecasting of COVID-19 Trends at the County Level in the United States

Abstract The novel coronavirus (COVID-19) pandemic, first identified in Wuhan China in December 2019, has profoundly impacted various aspects of daily life, society, healthcare systems, and global health policies. There have been more than half a billion human infections and more than 6 million deaths globally attributable to COVID-19. Although treatments and vaccines to protect against COVID-19 are now available, people continue being hospitalized and dying due to COVID-19 infections. Real-time surveillance of population-level infections, hospitalizations, and deaths has helped public health officials better allocate healthcare resources and deploy mitigation strategies. However, producing reliable, real-time, short-term disease activity forecasts (one or two weeks into the future) remains a practical challenge. The recent emergence of robust time-series forecasting methodologies based on deep learning approaches has led to clear improvements in multiple research fields. We propose a recurrent neural network model named Fine-Grained Infection Forecast Network (FIGI-Net), which utilizes a stacked bidirectional LSTM structure designed to leverage fine-grained county-level data, to produce daily forecasts of COVID-19 infection trends up to two weeks in advance. We show that FIGI-Net improves existing COVID-19 forecasting approaches and delivers accurate county-level COVID-19 disease estimates. Specifically, FIGI-Net is capable of anticipating upcoming sudden changes in disease trends such as the onset of a new outbreak or the peak of an ongoing outbreak, a skill that multiple existing state-of-the-art models fail to achieve. This improved performance is observed across locations and periods. Our enhanced forecasting methodologies may help protect human populations against future disease outbreaks..

Medienart:

Preprint

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

bioRxiv.org - (2024) vom: 27. März Zur Gesamtaufnahme - year:2024

Sprache:

Englisch

Beteiligte Personen:

Song, Tzu-Hsi [VerfasserIn]
Clemente, Leonardo [VerfasserIn]
Pan, Xiang [VerfasserIn]
Jang, Junbong [VerfasserIn]
Santillana, Mauricio [VerfasserIn]
Lee, Kwonmoo [VerfasserIn]

Links:

Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/2024.01.13.24301248

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI042158567