Developmental stage determines the realized energy landscape for a flight specialist

Abstract The heterogeneity of the physical environment determines the cost of transport for animals, shaping their energy landscape. Animals respond to this energy landscape by adjusting their distribution and movement to maximize gains and reduce movement costs. Much of our current knowledge about energy landscape dynamics focuses on factors external to the animal, particularly the spatio-temporal variations of the environment. However, an animal’s internal state can significantly impact its ability to perceive and utilize the available energy, creating a distinction between the “fundamental” and the “realized” energy landscapes. Here we show that the realized energy landscape varies along the onto-genetic axis. Locomotor and cognitive capabilities of individuals change over time, especially during the early life stages. We investigate the development of the realized energy landscape in the Central European Alpine population of the golden eagleAquila chrysaetos, a large predator that requires negotiating the atmospheric environment to achieve energy-efficient soaring flight. We quantified weekly energy landscapes using environmental features for 55 juvenile golden eagles, demonstrating that energetic costs of traversing the landscape decreased as the birds aged. In fact, the potentially flyable area within the Alpine region increased 2,170-fold during their first three years of independence. Our work contributes to achieving a predictive understanding of animal movement behaviors by presenting ontogeny as a mechanism shaping the realized energy landscape..

Medienart:

Preprint

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

bioRxiv.org - (2024) vom: 30. März Zur Gesamtaufnahme - year:2024

Sprache:

Englisch

Beteiligte Personen:

Nourani, Elham [VerfasserIn]
Faure, Louise [VerfasserIn]
Brønnvik, Hester [VerfasserIn]
Scacco, Martina [VerfasserIn]
Bassi, Enrico [VerfasserIn]
Fiedler, Wolfgang [VerfasserIn]
Grüebler, Martin U. [VerfasserIn]
Hatzl, Julia [VerfasserIn]
Jenny, David [VerfasserIn]
Roverselli, Andrea [VerfasserIn]
Sumasgutner, Petra [VerfasserIn]
Tschumi, Matthias [VerfasserIn]
Wikelski, Martin [VerfasserIn]
Safi, Kamran [VerfasserIn]

Links:

Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/2023.09.07.556633

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI040790932