MCAK Inhibitors Induce Aneuploidy in Triple Negative Breast Cancer Models

Abstract Standard of care for triple negative breast cancer (TNBC) involves the use of microtubule poisons like paclitaxel, which are proposed to work by inducing lethal levels of aneuploidy in tumor cells. While these drugs are initially effective in treating cancer, dose-limiting peripheral neuropathies are common. Unfortunately, patients often relapse with drug resistant tumors. Identifying agents against targets that limit aneuploidy may be a valuable approach for therapeutic development. One potential target is the microtubule depolymerizing kinesin, MCAK, which limits aneuploidy by regulating microtubule dynamics during mitosis. Using publicly available datasets, we found that MCAK is upregulated in triple negative breast cancer and is associated with poorer prognoses. Knockdown of MCAK in tumor-derived cell lines caused a two- to five-fold reduction in the IC50for paclitaxel, without affecting normal cells. Using FRET and image-based assays, we screened compounds from the ChemBridge 50k library and discovered three putative MCAK inhibitors. These compounds reproduced the aneuploidy-inducing phenotype of MCAK loss, reduced clonogenic survival of TNBC cells regardless of taxane-resistance, and the most potent of the three, C4, sensitized TNBC cells to paclitaxel. Collectively, our work shows promise that MCAK may serve as both a biomarker of prognosis and as a therapeutic target.Simple Summary Triple negative breast cancer (TNBC) is the most lethal breast cancer subtype with few treatment options available. Standard of care for TNBC involves the use of taxanes, which are initially effective, but dose limiting toxicities are common, and patients often relapse with resistant tumors. Specific drugs that produce taxane-like effects may be able to improve patient quality of life and prognosis. In this study we identify three novel inhibitors of the Kinesin-13 MCAK. MCAK inhibition induces aneuploidy; similar to cells treated with taxanes. We demonstrate that MCAK is upregulated in TNBC and is associated with poorer prognoses. These MCAK inhibitors reduce the clonogenic survival of TNBC cells, and the most potent of the three inhibitors, C4, sensitizes TNBC cells to taxanes, similar to the effects of MCAK knockdown. This work will expand the field of precision medicine to include aneuploidy-inducing drugs that have the potential to improve patient outcomes..

Medienart:

Preprint

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

bioRxiv.org - (2024) vom: 23. Apr. Zur Gesamtaufnahme - year:2024

Sprache:

Englisch

Beteiligte Personen:

Smith, John C. [VerfasserIn]
Husted, Stefan [VerfasserIn]
Pilrose, Jay [VerfasserIn]
Ems-McClung, Stephanie C. [VerfasserIn]
Stout, Jane R. [VerfasserIn]
Carpenter, Richard L. [VerfasserIn]
Walczak, Claire E. [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/2023.05.31.543118

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI039765180