The spatiotemporal richness of hummingbird wing deformations

ABSTRACT Animals exhibit an abundant diversity of forms, and this diversity is even more evident when considering animals that can change shape on demand. The evolution of flexibility contributes to aspects of performance from propulsive efficiency to environmental navigation. It is, however, challenging to quantify and compare body parts that, by their nature, dynamically vary in shape over many time scales. Commonly, body configurations are tracked by labelled markers and quantified parametrically through conventional measures of size and shape (descriptor approach) or non-parametrically through data-driven analyses that broadly capture spatiotemporal deformation patterns (shape variable approach). We developed a weightless marker tracking technique and combined these analytic approaches to study wing morphological flexibility in hoverfeeding Anna’s hummingbirds (Calypte anna). Four shape variables explained >95% of typical stroke cycle wing shape variation and were broadly correlated with specific conventional descriptors like wing twist and area. Moreover, shape variables decomposed wing deformations into pairs of in- and out-of-plane components at integer multiples of the stroke frequency. This property allowed us to identify spatiotemporal deformation profiles characteristic of hoverfeeding with experimentally imposed kinematic constraints, including through shape variables explaining <10% of typical shape variation. Hoverfeeding in front of a visual barrier restricted stroke amplitude and elicited increased stroke frequencies together with in- and out-of-plane deformations throughout the stroke cycle. Lifting submaximal loads increased stroke amplitudes at similar stroke frequencies together with prominent in-plane deformations during the upstroke and pronation. Our study highlights how spatially and temporally distinct changes in wing shape can contribute to agile fluidic locomotion.Summary Hummingbirds exhibit complex wing deformations throughout the stroke cycle, and the timing and origin of these deformations differs between hoverfeeding behaviours..

Medienart:

Preprint

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

bioRxiv.org - (2024) vom: 18. Apr. Zur Gesamtaufnahme - year:2024

Sprache:

Englisch

Beteiligte Personen:

Skandalis, Dimitri A. [VerfasserIn]
Baliga, Vikram B. [VerfasserIn]
Goller, Benjamin [VerfasserIn]
Altshuler, Douglas A. [VerfasserIn]

Links:

Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/2023.05.08.539717

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI039565629