Codon affinity in mitochondrial DNA shapes evolutionary and somatic fitness

Summary Paragraph Somatic variation contributes to biological heterogeneity by modulating cellular proclivity to differentiate, expand, adapt, or die. While large-scale sequencing efforts have revealed the foundational role of somatic variants to drive human tumor evolution, our understanding of the contribution of mutations to modulate cellular fitness in non-malignant contexts remains understudied. Here, we identify a mosaic synonymous variant (m.7076A>G) in the mitochondrial DNA (mtDNA) encoded cytochrome c-oxidase subunit 1 gene (MT-CO1, p.Gly391=), which was present at homoplasmy in 47% of immune cells from a healthy donor. Using single-cell multi-omics, we discover highly specific selection against the m.7076G mutant allele in the CD8+effector memory T cell compartmentin vivo, reminiscent of selection observed for pathogenic mtDNA alleles1, 2and indicative of lineage-specific metabolic requirements. While the wildtype m.7076A allele is translated via Watson-Crick-Franklin base-pairing, the anticodon diversity of the mitochondrial transfer RNA pool is limited, requiring wobble-dependent translation of the m.7076G mutant allele. Notably, mitochondrial ribosome profiling revealed altered codon-anticodon affinity at the wobble position as evidenced by stalled translation of the synonymous m.7076G mutant allele encoding for glycine. Generalizing this observation, we provide a new ontogeny of the 8,482 synonymous variants in the human mitochondrial genome that enables interpretation of functional mtDNA variation. Specifically, via inter- and intra-species evolutionary analyses, population-level complex trait associations, and the occurrence of germline and somatic mtDNA mutations from large-scale sequencing studies, we demonstrate that synonymous variation impacting codon:anticodon affinity is actively evolving across the entire mitochondrial genome and has broad functional and phenotypic effects. In summary, our results introduce a new ontogeny for mitochondrial genetic variation and support a model where organismal principles can be discerned from somatic evolution via single-cell genomics..

Medienart:

Preprint

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

bioRxiv.org - (2023) vom: 27. Apr. Zur Gesamtaufnahme - year:2023

Sprache:

Englisch

Beteiligte Personen:

Lareau, Caleb A. [VerfasserIn]
Yin, Yajie [VerfasserIn]
Gutierrez, Jacob C. [VerfasserIn]
Dhindsa, Ryan S. [VerfasserIn]
Gribling-Burrer, Anne-Sophie [VerfasserIn]
Hsieh, Yu-Hsin [VerfasserIn]
Nitsch, Lena [VerfasserIn]
Buquicchio, Frank A. [VerfasserIn]
Abay, Tsion [VerfasserIn]
Zielinski, Sebastian [VerfasserIn]
Stickels, Robert R. [VerfasserIn]
Ulirsch, Jacob C. [VerfasserIn]
Yan, Patrick [VerfasserIn]
Wang, Fangyi [VerfasserIn]
Miao, Zhuang [VerfasserIn]
Sandor, Katalin [VerfasserIn]
Daniel, Bence [VerfasserIn]
Liu, Vincent [VerfasserIn]
Wang, Quanli [VerfasserIn]
Hu, Fengyuan [VerfasserIn]
Smith, Katherine R. [VerfasserIn]
Deevi, Sri V.V. [VerfasserIn]
Maschmeyer, Patrick [VerfasserIn]
Petrovski, Slavé [VerfasserIn]
Smyth, Redmond P. [VerfasserIn]
Greenleaf, William J. [VerfasserIn]
Kundaje, Anshul [VerfasserIn]
Munschauer, Mathias [VerfasserIn]
Ludwig, Leif S. [VerfasserIn]
Satpathy, Ansuman T. [VerfasserIn]

Links:

Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/2023.04.23.537997

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI039353028