Frataxin deficiency disrupts mitochondrial respiration and pulmonary endothelial cell function

Abstract Deficiency of iron-sulfur (Fe-S) clusters promotes metabolic rewiring of the endothelium and the development of pulmonary hypertension (PH) in vivo. Joining a growing number of Fe-S biogenesis proteins critical to pulmonary endothelial function, recent data highlighted that frataxin (FXN) reduction drives Fe-S-dependent genotoxic stress and senescence across multiple types of pulmonary vascular disease. Trinucleotide repeat mutations in the FXN gene cause Friedreich’s ataxia, a disease characterized by cardiomyopathy and neurodegeneration. These tissue-specific phenotypes have historically been attributed to mitochondrial reprogramming and oxidative stress. Whether FXN coordinates both nuclear and mitochondrial processes in the endothelium is unknown. Here, we aim to identify the mitochondria-specific effects of FXN deficiency in the endothelium that predispose to pulmonary hypertension. Our data highlight an Fe-S-driven metabolic shift separate from previously described replication stress whereby FXN knockdown diminished mitochondrial respiration and increased glycolysis and oxidative species production. In turn, FXN-deficient endothelial cells exhibited a vasoconstrictive phenotype consistent with PH. These data were observed in both primary pulmonary endothelial cells after pharmacologic inhibition of FXN and inducible pluripotent stem cell-derived endothelial cells from patients with FXN mutations. Altogether, this study defines FXN as a shared upstream driver of pathologic aberrations in both metabolism and genomic stability. Moreover, our study highlights FXN-specific vasoconstriction, suggesting available and future therapies may be beneficial and targeted for PH subtypes with FXN deficiency.Graphical Abstract <jats:fig id="ufig1" position="float" fig-type="figure" orientation="portrait"><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="504849v1_ufig1" position="float" orientation="portrait" /></jats:fig>.

Medienart:

Preprint

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

bioRxiv.org - (2024) vom: 23. Apr. Zur Gesamtaufnahme - year:2024

Sprache:

Englisch

Beteiligte Personen:

Culley, Miranda K. [VerfasserIn]
Mehta, Monica [VerfasserIn]
Zhao, Jingsi [VerfasserIn]
Perk, Dror [VerfasserIn]
Tai, Yi Yin [VerfasserIn]
Tang, Ying [VerfasserIn]
Shiva, Sruti [VerfasserIn]
Rabinovitch, Marlene [VerfasserIn]
Gu, Mingxia [VerfasserIn]
Bertero, Thomas [VerfasserIn]
Chan, Stephen Y. [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/2022.08.22.504849

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI036966258