Broad-spectrum extracellular antiviral properties of Cucurbit[n]urils

Abstract Viruses are microscopic pathogens capable of causing disease and are responsible for a range of human mortality and morbidity worldwide. They can be rendered harmless or destroyed with a range of antiviral chemical compounds. Cucurbit[n]urils (CB[n]s) are a macrocycle chemical compound existing as a range of homologues; due to their structure they can bind to biological materials, acting as supramolecular “hosts” to “guests”, such as amino acids. Due to the increasing need for a non-toxic antiviral compound, we investigated whether cucurbit[n]urils could act in an antiviral manner. We have found that certain cucurbit[n]uril homologues do indeed have an antiviral effect against a range of viruses, including RSV and SARS-CoV-2. In particular, we demonstrate that CB[7] is the active homologue of CB[n] mixtures, having an antiviral effect against enveloped and non-enveloped species. High levels of efficacy were observed with five-minute contact times across different viruses. We also demonstrate that CB[7] acts with an extracellular virucidal mode of action via host-guest supramolecular interactions between viral surface proteins and the CB[n] cavity, rather than via cell internalisation or a virustatic mechanism. This finding demonstrates that CB[7] acts as a supramolecular virucidal antiviral (a mechanism distinct from other current extracellular antivirals) demonstrating the potential of supramolecular interactions for future antiviral disinfectants..

Medienart:

Preprint

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

bioRxiv.org - (2023) vom: 18. Nov. Zur Gesamtaufnahme - year:2023

Sprache:

Englisch

Beteiligte Personen:

Jones, Luke M. [VerfasserIn]
Super, Elana H. [VerfasserIn]
Batt, Lauren J. [VerfasserIn]
Gasbarri, Matteo [VerfasserIn]
Cheesman, Benjamin T. [VerfasserIn]
Howe, Andrew M. [VerfasserIn]
Coulston, Roger [VerfasserIn]
Jones, Samuel T. [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/2022.03.15.484424

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI035505257