Anti-spike antibody response to natural infection with SARS-CoV-2 and its activity against emerging variants

Abstract The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has substantially impacted human health globally. Spike-specific antibody response plays a major role in protection against SARS-CoV-2. Here, we demonstrated that acute SARS-CoV-2 infection elicits rapid and robust spike-binding and ACE2-blocking antibody responses, which wane approximately 11 months after infection. Serological responses were found to be correlated with the frequency of spike-specific memory B cell responses to natural infections. Further, significantly higher spike-binding, ACE2-blocking, and memory B cell responses were detected in patients with fever and pneumonia. Spike-specific antibody responses were found to be greatly affected by spike mutations in emerging variants, especially the Beta and Omicron variants. These results warrant continued surveillance of spike-specific antibody responses to natural infections and highlight the importance of maintaining functional anti-spike antibodies through immunization.Importance As spike protein-specific antibody responses play a major role in protection against SARS-CoV-2, we examined the spike-binding and ACE2-blocking antibody responses in SARS-CoV-2 infection at different time points. We found robust responses following acute infection, which waned approximately 11 months after infection. Further, the serological responses were correlated with the frequency of spike-specific memory B cell responses to natural infections. Patients with fever and pneumonia showed significantly stronger spike-binding, ACE2-blocking antibody, and memory B cell responses. Moreover, the spike-specific antibody responses were substantially affected by the emerging variants, especially the Beta and Omicron variants. These results warrant continued surveillance of spike-specific antibody responses to natural infections and highlight the importance of maintaining functional anti-spike antibodies through immunization..

Medienart:

Preprint

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

bioRxiv.org - (2022) vom: 28. Okt. Zur Gesamtaufnahme - year:2022

Sprache:

Englisch

Beteiligte Personen:

Chen, Cheng-Pin [VerfasserIn]
Huang, Kuan-Ying A. [VerfasserIn]
Shih, Shin-Ru [VerfasserIn]
Lin, Yi-Chun [VerfasserIn]
Cheng, Chien-Yu [VerfasserIn]
Huang, Yhu-Chering [VerfasserIn]
Lin, Tzou-Yien [VerfasserIn]
Cheng, Shu-Hsing [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/2022.03.07.481737

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI035451491