How immunity from and interaction with seasonal coronaviruses can shape SARS-CoV-2 epidemiology

Abstract We hypothesised that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) could have affected SARS-CoV-2 transmission, including generating reduced susceptibility in children. To determine what the pre-pandemic distribution of immunity to HCoVs was, we fitted a mathematical model to 6 years of seasonal coronavirus surveillance data from England and Wales. We estimated a duration of immunity to seasonal HCoVs of 7.3 years (95%CI 6.8 - 7.9) and show that, while cross-protection between HCoV and SARS-CoV-2 may contribute to the age distribution, it is insufficient to explain the age pattern of SARS-CoV-2 infections in the first wave of the pandemic in England and Wales. Projections from our model illustrate how different strengths of cross-protection between circulating coronaviruses could determine the frequency and magnitude of SARS-CoV-2 epidemics over the coming decade, as well as the potential impact of cross-protection on future seasonal coronavirus transmission.Significance statement: Cross-protection from seasonal epidemics of human coronaviruses (HCoVs) has been hypothesised to contribute to the relative sparing of children during the early phase of the pandemic. Testing this relies on understanding the pre-pandemic age-distribution of recent HCoV infections, but little is known about their dynamics. Using England and Wales as a case study, we use a transmission model to estimate the duration of immunity to seasonal coronaviruses, and show how cross-protection could have affected the age distribution of susceptibility during the first wave, and alter SARS-CoV-2 transmission patterns over the coming decade..

Medienart:

Preprint

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

bioRxiv.org - (2022) vom: 29. Dez. Zur Gesamtaufnahme - year:2022

Sprache:

Englisch

Beteiligte Personen:

Waterlow, Naomi R [VerfasserIn]
van Leeuwen, Edwin [VerfasserIn]
Davies, Nicholas G. [VerfasserIn]
Flasche, Stefan [VerfasserIn]
Eggo, Rosalind M [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/2021.05.27.21257032

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI031898033