Real-time PCR assays for detection and quantification of early P. falciparum gametocyte stages

Abstract Introduction The use of reverse transcription, quantitative qRT-PCR assays for detection and quantification of late gametocyte stages has revealed the high transmission capacity of the human malaria parasite, Plasmodium falciparum. A full understanding how the parasite adjusts its transmission in response to varying in-host environmental conditions during natural infections requires simultaneous quantification of early and late gametocytes. Here, we describe qRT-PCR assays that are specific for detection and quantification of early-stage gametocytes of P. falciparum.Methods The assays are based on expression of known early gametocyte genes (pfpeg4, pfg27, pfge1, pfge3 and pfgexp5). The specificity of the qRT-PCR assays was tested using purified stage II and stage V gametocytes. These validated assays were used with qRT-PCR assays targeting late stage (pfs25) and all-stage (pfs16) gametocyte-specific transcripts to quantify gametocytes in natural P. falciparum infections and in a controlled human clinical infection study.Results The relative expression of pfpeg4, pfg27 and pfge3, but not of pfge1 and pfgexp5, was significantly higher in purified stage II compared to stage V gametocytes, indicating early gametocyte specificity. In natural infections, 71.2% of individuals had both early and late gametocyte transcripts (pfpeg4/pfg27 plus pfs25), 12.6% harboured only early gametocytes transcripts (pfpeg4/pfg27), and 15.2% had only late gametocytes transcripts (pfs25). In natural infections, the limit of detection was equivalent to 190 and 390 gametocytes/mL blood for pfpeg4 and pfg27, respectively. In infected volunteers, transcripts of pfpeg4 and pfg27 were detected shortly after the onset of blood stage infection, demonstrating the specificity of the assays.Conclusion The pfpeg4 and pfg27 qRT-PCR assays can be used specifically to quantify circulating immature gametocytes. Quantification of early gametocytes will improve understanding of epidemiological processes that modulate P. falciparum transmission and enhance the evaluation of transmission blocking interventions..

Medienart:

Preprint

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

bioRxiv.org - (2021) vom: 15. Dez. Zur Gesamtaufnahme - year:2021

Sprache:

Englisch

Beteiligte Personen:

Gadalla, Amal A.H. [VerfasserIn]
Siciliano, Giulia [VerfasserIn]
Farid, Ryan [VerfasserIn]
Alano, Pietro [VerfasserIn]
Ranford-Cartwright, Lisa [VerfasserIn]
McCarthy, James S [VerfasserIn]
Thompson, Joanne [VerfasserIn]
Babiker, Hamza [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [kostenfrei]

doi:

10.1101/2021.03.28.21254192

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI020288816