Drug repurposing: omeprazole increases the efficacy of acyclovir against herpes simplex virus type 1 and 2

Abstract Objectives Omeprazole was shown to improve the anti-cancer effect of the nucleoside-analogue 5-fluorouracil. Here, we investigated the effects of omeprazole on the activities of the antiviral nucleoside analogues ribavirin and acyclovir.Methods West Nile virus-infected Vero cells and influenza A H1N1-infected MDCK cells were treated with omeprazole and/ or ribavirin. Herpes simplex virus 1 (HSV-1)- or HSV-2-infected Vero or HaCat cells were treated with omeprazole and/ or acyclovir. Antiviral effects were determined by examination of cytopathogenic effects (CPE), immune staining, and virus yield assay. Cell viability was investigated by MTT assay.Results Omeprazole concentrations up to 80μg/mL did not affect the antiviral effects of ribavirin. In contrast, omeprazole increased the acyclovir-mediated effects on HSV-1- and HSV-2-induced CPE formation in a dose-dependent manner in Vero and HaCat cells. Addition of omeprazole 80μg/mL resulted in a 10.8-fold reduction of the acyclovir concentration that reduces CPE formation by 50% (IC50) in HSV-1-infected Vero cells and in a 47.7-fold acyclovir IC50 reduction in HSV-1-infected HaCat cells. In HSV-2-infected cells, omeprazole reduced the acyclovir IC50 by 7.3-fold (Vero cells) or by 12.9-fold (HaCat cells). Omeprazole also enhanced the acyclovir-mediated effects on viral antigen expression and virus replication in HSV-1- and HSV-2-infected cells. In HSV-1-infected HaCat cells, omeprazole 80μg/mL reduced the virus titre in the presence of acyclovir 1μg/mL by 1.6×105-fold. In HSV-2-infected HaCat cells omeprazole 80μg/mL reduced the virus titre in the presence of acyclovir 2μg/mL by 9.2×103-fold. The investigated drug concentrations did not affect cell viability, neither alone nor in combination.Conclusions Omeprazole increases the anti-HSV activity of acyclovir. As clinically well-established and tolerated drug, it is a candidate drug for antiviral therapies in combination with acyclovir..

Medienart:

Preprint

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

bioRxiv.org - (2021) vom: 15. Dez. Zur Gesamtaufnahme - year:2021

Sprache:

Englisch

Beteiligte Personen:

Michaelis, Martin [VerfasserIn]
Kleinschmidt, Malte Christian [VerfasserIn]
Wass, Mark N. [VerfasserIn]
Cinatl, Jindrich [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [kostenfrei]

doi:

10.1101/313072

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI000272884