Spectral Discrimination in “Color Blind” Animals via Chromatic Aberration and Pupil Shape

Abstract We present a mechanism by which organisms with only a single photoreceptor, that have a monochromatic view of the world, can achieve color discrimination. The combination of an off-axis pupil and the principle of chromatic aberration (where light of different colors focus at different distances behind a lens) can combine to provide “color-blind” animals with a way to distinguish colors. As a specific example we constructed a computer model of the visual system of cephalopods, (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. Nevertheless, cephalopods dramatically change color both to produce chromatically-matched camouflage and to signal conspecifics. This presents a paradox – an apparent ability to determine color in organisms with a monochromatic visual system – that has been a long-standing puzzle. We demonstrate that chromatic blurring dominates the visual acuity in these animals, and we quantitatively show how chromatic aberration can be exploited, especially through non-axial pupils that are characteristic of cephalopods, to obtain spectral information. This mechanism is consistent with the extensive suite of visual/behavioral and physiological data that have been obtained from cephalopod studies, and resolves the apparent paradox of vivid chromatic behaviors in “color-blind” animals. Moreover, this proposed mechanism has potential applicability in any organisms with limited photoreceptor complements, such as spiders and dolphins..

Medienart:

Preprint

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

bioRxiv.org - (2024) vom: 29. Apr. Zur Gesamtaufnahme - year:2024

Sprache:

Englisch

Beteiligte Personen:

Stubbs, Alexander L. [VerfasserIn]
Stubbs, Christopher W. [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [kostenfrei]

Themen:

570
Biology

doi:

10.1101/017756

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XBI000041866