Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size

This work brings the leading accuracy, sample efficiency, and robustness of deep equivariant neural networks to the extreme computational scale. This is achieved through a combination of innovative model architecture, massive parallelization, and models and implementations optimized for efficient GPU utilization. The resulting Allegro architecture bridges the accuracy-speed tradeoff of atomistic simulations and enables description of dynamics in structures of unprecedented complexity at quantum fidelity. To illustrate the scalability of Allegro, we perform nanoseconds-long stable simulations of protein dynamics and scale up to a 44-million atom structure of a complete, all-atom, explicitly solvated HIV capsid on the Perlmutter supercomputer. We demonstrate excellent strong scaling up to 100 million atoms and 70% weak scaling to 5120 A100 GPUs..

Medienart:

Preprint

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

arXiv.org - (2023) vom: 19. Apr. Zur Gesamtaufnahme - year:2023

Sprache:

Englisch

Beteiligte Personen:

Musaelian, Albert [VerfasserIn]
Johansson, Anders [VerfasserIn]
Batzner, Simon [VerfasserIn]
Kozinsky, Boris [VerfasserIn]

Links:

Volltext [kostenfrei]

Themen:

000
530
570
Computer Science - Machine Learning
Physics - Chemical Physics
Physics - Computational Physics
Quantitative Biology - Biomolecules

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XAR039317420