Estimating Spread of Contact-Based Contagions in a Population Through Sub-Sampling

Physical contacts result in the spread of various phenomena such as viruses, gossips, ideas, packages and marketing pamphlets across a population. The spread depends on how people move and co-locate with each other, or their mobility patterns. How far such phenomena spread has significance for both policy making and personal decision making, e.g., studying the spread of COVID-19 under different intervention strategies such as wearing a mask. In practice, mobility patterns of an entire population is never available, and we usually have access to location data of a subset of individuals. In this paper, we formalize and study the problem of estimating the spread of a phenomena in a population, given that we only have access to sub-samples of location visits of some individuals in the population. We show that simple solutions such as estimating the spread in the sub-sample and scaling it to the population, or more sophisticated solutions that rely on modeling location visits of individuals do not perform well in practice, the former because it ignores contacts between unobserved individuals and sampled ones and the latter because it yields inaccurate modeling of co-locations. Instead, we directly model the co-locations between the individuals. We introduce PollSpreader and PollSusceptible, two novel approaches that model the co-locations between individuals using a contact network, and infer the properties of the contact network using the subsample to estimate the spread of the phenomena in the entire population. We show that our estimates provide an upper bound and a lower bound on the spread of the disease in expectation. Finally, using a large high-resolution real-world mobility dataset, we experimentally show that our estimates are accurate, while other methods that do not correctly account for co-locations between individuals result in wrong observations (e.g, premature herd-immunity)..

Medienart:

Preprint

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

arXiv.org - (2020) vom: 13. Dez. Zur Gesamtaufnahme - year:2020

Sprache:

Englisch

Beteiligte Personen:

Zeighami, Sepanta [VerfasserIn]
Shahabi, Cyrus [VerfasserIn]
Krumm, John [VerfasserIn]

Links:

Volltext [kostenfrei]

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XAR019542607