Stochastic Dynamics of Electrical Membrane with Voltage-Dependent Ion Channel Fluctuations

Brownian ratchet like stochastic theory for the electrochemical membrane system of Hodgkin-Huxley (HH) is developed. The system is characterized by a continuous variable $Q_m(t)$, representing mobile membrane charge density, and a discrete variable $K_t$ representing ion channel conformational dynamics. A Nernst-Planck-Nyquist-Johnson type equilibrium is obtained when multiple conducting ions have a common reversal potential. Detailed balance yields a previously unknown relation between the channel switching rates and membrane capacitance, bypassing Eyring-type explicit treatment of gating charge kinetics. From a molecular structural standpoint, membrane charge $Q_m$ is a more natural dynamic variable than potential $V_m$; our formalism treats $Q_m$-dependent conformational transition rates $\lambda_{ij}$ as intrinsic parameters. Therefore in principle, $\lambda_{ij}$ vs. $V_m$ is experimental protocol dependent,e.g., different from voltage or charge clamping measurements. For constant membrane capacitance per unit area $C_m$ and neglecting membrane potential induced by gating charges, $V_m=Q_m/C_m$, and HH's formalism is recovered. The presence of two types of ions, with different channels and reversal potentials, gives rise to a nonequilibrium steady state with positive entropy production $e_p$. For rapidly fluctuating channels, an expression for $e_p$ is obtained..

Medienart:

Preprint

Erscheinungsjahr:

2014

Erschienen:

2014

Enthalten in:

arXiv.org - (2014) vom: 06. Apr. Zur Gesamtaufnahme - year:2014

Sprache:

Englisch

Beteiligte Personen:

Qian, Hong [VerfasserIn]
Zhang, Xue-Juan [VerfasserIn]
Qian, Min [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [kostenfrei]

doi:

10.1209/0295-5075/106/10002

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XAR005154685