Structure Engineering of BiSbS x Nanocrystals Embedded within Sulfurized Polyacrylonitrile Fibers for High Performance of Potassium‐Ion Batteries

Abstract Potassium‐ion batteries (PIBs) are regarded as promising candidates in next‐generation energy storage technology; however, the electrode materials in PIBs are usually restricted by the shortcomings of large volume expansion and poor cycling stability stemming from a high resistance towards diffusion and insertion of large‐sized K ions. In this study, BiSbS x nanocrystals are rationally integrated with sulfurized polyacrylonitrile (SPAN) fibres through electrospinning technology with an annealing process. Such a unique structure, in which BiSbS x nanocrystals are embedded inside the SPAN fibre, affords multiple binding sites and a short diffusion length for K+ to realize fast kinetics. In addition, the molecular structure of SPAN features robust chemical interactions for stationary diffluent discharge products. Thus, the electrode demonstrates a superior potassium storage performance with an excellent reversible capacity of 790 mAh g−1(at 0.1 A g−1 after 50 cycles) and 472 mAh g−1(at 1 A g−1 after 2000 cycles). It's one of the best performances for metal dichalcogenides anodes for PIBs to date. The unusual performance of the BiSbS xSPAN composite is attributed to the synergistic effects of the judicious nanostructure engineering of BiSbS x nanocrystals as well as the chemical interaction and confinement of SPAN fibers..

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:28

Enthalten in:

Chemistry – A European Journal - 28(2022), 21

Beteiligte Personen:

Li, Xinye [VerfasserIn]
Liu, Yanru [VerfasserIn]
Lin, Chuyuan [VerfasserIn]
Wang, Yiyi [VerfasserIn]
Lei, Zewei [VerfasserIn]
Xiong, Peixun [VerfasserIn]
Luo, Yongjin [VerfasserIn]
Chen, Qinghua [VerfasserIn]
Zeng, Lingxing [VerfasserIn]
Wei, Mingdeng [VerfasserIn]
Qian, Qingrong [VerfasserIn]

BKL:

35.00

Anmerkungen:

© 2022 Wiley‐VCH GmbH

Umfang:

10

doi:

10.1002/chem.202200028

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

WLY003508773