Metal‐Assisted Efficient Nanotubular Electrocatalyst of MoS2 for Hydrogen Production

Abstract Inspired by the catalytic activity along the edge sites of layered‐structured MoS2 for the hydrogen evolution reaction (HER), maximizing the specific active edge sites per unit geometric area via material architectural design is the most common strategy for enhancing HER performance. Here, we report a convenient growth approach using atomic layer deposition (ALD) to obtain novel nanostructures of MoS2 nanotube arrays with a high number of exposed active edge sites. MoS2 NTs were spontaneously immobilized in an ordered arrangement of anodic aluminum oxide (AAO) template with a well‐defined size and shape. Ordered MoS2 NTs array were fabricated with highly conductive, large electrochemical active area as an efficient HER catalyst. Strikingly, by engineering the contact metal serving as the current collector, the contact properties were revealed to be important factors for the electrocatalytic performance of the metal‐assisted MoS2 electrodes. Our material system shows a significantly low overpotential of 260 mV at 10 mA/cm2 and a Tafel slope of 55 mV/dec, while it remains stable during long‐term operation in strong acidic media..

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:13

Enthalten in:

ChemCatChem - 13(2021), 14, Seite 3237-3246

Beteiligte Personen:

Anh Ho, Thi [VerfasserIn]
Kim, Eunsoo [VerfasserIn]
Yang, Hyunwoo [VerfasserIn]
Joe, Jemee [VerfasserIn]
Hyeok Park, Jong [VerfasserIn]
Shin, Hyunjung [VerfasserIn]

Anmerkungen:

© 2021 Wiley‐VCH GmbH

Umfang:

10

doi:

10.1002/cctc.202100504

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

WLY003249506