Response of particle-attached and free-living bacterial communities to Microcystis blooms

Abstract The massive proliferation of Microcystis threatens freshwater ecosystems and degrades water quality globally. Understanding the mechanisms that contribute to Microcystis growth is crucial for managing Microcystis blooms. The lifestyles of bacteria can be classified generally into two groups: particle-attached (PA; > 3 µm) and free-living (FL; 0.2–3.0 µm). However, little is known about the response of PA and FL bacteria to Microcystis blooms. Using 16S rRNA gene high-throughput sequencing, we investigated the stability, assembly process, and co-occurrence patterns of PA and FL bacterial communities during distinct bloom stages. PA bacteria were phylogenetically different from their FL counterparts. Microcystis blooms substantially influenced bacterial communities. The time decay relationship model revealed that Microcystis blooms might increase the stability of both PA and FL bacterial communities. A contrasting community assembly mechanism was observed between the PA and FL bacterial communities. Throughout Microcystis blooms, homogeneous selection was the major assembly process that impacted the PA bacterial community, whereas drift explained much of the turnover of the FL bacterial community. Both PA and FL bacterial communities could be separated into modules related to different phases of Microcystis blooms. Microcystis blooms altered the assembly process of PA and FL bacterial communities. PA bacterial community appeared to be more responsive to Microcystis blooms than FL bacteria. Decomposition of Microcystis blooms may enhance cooperation among bacteria. Our findings highlight the importance of studying bacterial lifestyles to understand their functions in regulating Microcystis blooms. Key points • Microcystis blooms alter the assembly process of PA and FL bacterial communities • Microcystis blooms increase the stability of both PA and FL bacterial communities • PA bacteria seem to be more responsive to Microcystis blooms than FL bacteria Graphical Abstract.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:108

Enthalten in:

Applied microbiology and biotechnology - 108(2024), 1 vom: 06. Jan.

Sprache:

Englisch

Beteiligte Personen:

Van Le, Ve [VerfasserIn]
Kang, Mingyeong [VerfasserIn]
Ko, So-Ra [VerfasserIn]
Park, Chan-Yeong [VerfasserIn]
Lee, Jay Jung [VerfasserIn]
Choi, In-Chan [VerfasserIn]
Oh, Hee-Mock [VerfasserIn]
Ahn, Chi-Yong [VerfasserIn]

Links:

Volltext [lizenzpflichtig]

Themen:

Assembly process
Cyanobacterial blooms
Free-living bacteria
Particle-attached bacteria

Anmerkungen:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

doi:

10.1007/s00253-023-12828-2

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

SPR054288800