Deep learning-based segmentation of multisite disease in ovarian cancer

Purpose To determine if pelvic/ovarian and omental lesions of ovarian cancer can be reliably segmented on computed tomography (CT) using fully automated deep learning-based methods. Methods A deep learning model for the two most common disease sites of high-grade serous ovarian cancer lesions (pelvis/ovaries and omentum) was developed and compared against the well-established “no-new-Net” framework and unrevised trainee radiologist segmentations. A total of 451 CT scans collected from four different institutions were used for training (n = 276), evaluation (n = 104) and testing (n = 71) of the methods. The performance was evaluated using the Dice similarity coefficient (DSC) and compared using a Wilcoxon test. Results Our model outperformed no-new-Net for the pelvic/ovarian lesions in cross-validation, on the evaluation and test set by a significant margin (p values being 4 × $ 10^{–7} $, 3 × $ 10^{–4} $, 4 × $ 10^{–2} $, respectively), and for the omental lesions on the evaluation set (p = 1 × $ 10^{–3} $). Our model did not perform significantly differently in segmenting pelvic/ovarian lesions (p = 0.371) compared to a trainee radiologist. On an independent test set, the model achieved a DSC performance of 71 ± 20 (mean ± standard deviation) for pelvic/ovarian and 61 ± 24 for omental lesions. Conclusion Automated ovarian cancer segmentation on CT scans using deep neural networks is feasible and achieves performance close to a trainee-level radiologist for pelvic/ovarian lesions. Relevance statement Automated segmentation of ovarian cancer may be used by clinicians for CT-based volumetric assessments and researchers for building complex analysis pipelines. Key points • The first automated approach for pelvic/ovarian and omental ovarian cancer lesion segmentation on CT images has been presented. • Automated segmentation of ovarian cancer lesions can be comparable with manual segmentation of trainee radiologists. • Careful hyperparameter tuning can provide models significantly outperforming strong state-of-the-art baselines. Graphical Abstract.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:7

Enthalten in:

European radiology experimental - 7(2023), 1 vom: 07. Dez.

Sprache:

Englisch

Beteiligte Personen:

Buddenkotte, Thomas [VerfasserIn]
Rundo, Leonardo [VerfasserIn]
Woitek, Ramona [VerfasserIn]
Escudero Sanchez, Lorena [VerfasserIn]
Beer, Lucian [VerfasserIn]
Crispin-Ortuzar, Mireia [VerfasserIn]
Etmann, Christian [VerfasserIn]
Mukherjee, Subhadip [VerfasserIn]
Bura, Vlad [VerfasserIn]
McCague, Cathal [VerfasserIn]
Sahin, Hilal [VerfasserIn]
Pintican, Roxana [VerfasserIn]
Zerunian, Marta [VerfasserIn]
Allajbeu, Iris [VerfasserIn]
Singh, Naveena [VerfasserIn]
Sahdev, Anju [VerfasserIn]
Havrilesky, Laura [VerfasserIn]
Cohn, David E. [VerfasserIn]
Bateman, Nicholas W. [VerfasserIn]
Conrads, Thomas P. [VerfasserIn]
Darcy, Kathleen M. [VerfasserIn]
Maxwell, G. Larry [VerfasserIn]
Freymann, John B. [VerfasserIn]
Öktem, Ozan [VerfasserIn]
Brenton, James D. [VerfasserIn]
Sala, Evis [VerfasserIn]
Schönlieb, Carola-Bibiane [VerfasserIn]

Links:

Volltext [kostenfrei]

Themen:

Deep learning
Omentum
Ovarian Neoplasms
Pelvis
Tomography (x-ray computed)

Anmerkungen:

© The Author(s) 2023

doi:

10.1186/s41747-023-00388-z

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

SPR054005388