Reaction environment self-modification on low-coordination $ Ni^{2+} $ octahedra atomic interface for superior electrocatalytic overall water splitting

Abstract Large scale synthesis of high-efficiency bifunctional electrocatalyst based on cost-effective and earth-abundant transition metal for overall water splitting in the alkaline environment is indispensable for renewable energy conversion. In this regard, meticulous design of active sites and probing their catalytic mechanism on both cathode and anode with different reaction environment at molecular-scale are vitally necessary. Herein, a coordination environment inheriting strategy is presented for designing low-coordination $ Ni^{2+} $ octahedra (L-Ni-8) atomic interface at a high concentration (4.6 at.%). Advanced spectroscopic techniques and theoretical calculations reveal that the self-matching electron delocalization and localization state at L-Ni-8 atomic interface enable an ideal reaction environment at both cathode and anode. To improve the efficiency of using the self-modification reaction environment at L-Ni-8, all of the structural features, including high atom economy, mass transfer, and electron transfer, are integrated together from atomic-scale to macro-scale. At high current density of 500 mA/$ cm^{2} $, the samples synthesized at gram-scale can deliver low hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials of 262 and 348 mV, respectively..

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:13

Enthalten in:

Nano research - 13(2020), 11 vom: 04. Aug., Seite 3068-3074

Sprache:

Englisch

Beteiligte Personen:

Sun, Kaian [VerfasserIn]
Zhao, Lei [VerfasserIn]
Zeng, Lingyou [VerfasserIn]
Liu, Shoujie [VerfasserIn]
Zhu, Houyu [VerfasserIn]
Li, Yanpeng [VerfasserIn]
Chen, Zheng [VerfasserIn]
Zhuang, Zewen [VerfasserIn]
Li, Zhaoling [VerfasserIn]
Liu, Zhi [VerfasserIn]
Cao, Dongwei [VerfasserIn]
Zhao, Jinchong [VerfasserIn]
Liu, Yunqi [VerfasserIn]
Pan, Yuan [VerfasserIn]
Chen, Chen [VerfasserIn]

Links:

Volltext [lizenzpflichtig]

Themen:

Atomic interface effect
Density functional theory
High current density
Overall water splitting
Reaction environment self-modification

doi:

10.1007/s12274-020-2974-7

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

SPR04087379X