Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

Background Titanium dioxide ($ TiO_{2} $) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade $ TiO_{2} $ (200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, $ TiO_{2} $ nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic potential as the original material. A further complicating issue is the effect of modifying or engineering of the nanomaterial to be structurally and geometrically different from the original material. Results $ TiO_{2} $ nanospheres, short (< 5 μm) and long (> 15 μm) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase $ TiO_{2} $ nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long $ TiO_{2} $ nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. Conclusions These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption..

Medienart:

E-Artikel

Erscheinungsjahr:

2009

Erschienen:

2009

Enthalten in:

Zur Gesamtaufnahme - volume:6

Enthalten in:

Particle and fibre toxicology - 6(2009), 1 vom: 31. Dez.

Sprache:

Englisch

Beteiligte Personen:

Hamilton, Raymond F [VerfasserIn]
Wu, Nianqiang [VerfasserIn]
Porter, Dale [VerfasserIn]
Buford, Mary [VerfasserIn]
Wolfarth, Michael [VerfasserIn]
Holian, Andrij [VerfasserIn]

Links:

Volltext [lizenzpflichtig]

Themen:

Alveolar Macrophage
High Resolution Transmission Electron Microscopy
Lung Lavage
NALP3 Inflammasome
TiO2 Nanoparticles

Anmerkungen:

© Hamilton et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (

doi:

10.1186/1743-8977-6-35

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

SPR029296080