Characterization of N-glycome profile in mouse brain tissue regions by MALDI-TOF/MS

Glycosylation is one of the most common types of post-translational modifications in mammals. It is well known that N-glycans play a key role in cell adhesion, differentiation, synapsis, and myelination during the development of the mammalian central nervous system (CNS). Neuropathological symptoms (such as epilepsy and Alzheimer’s disease) are usually accompanied by N-glycosylation changes. In this study, we extracted N-glycan chains from eight regions of the mouse brain, and combined high-throughput, high-resolution matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with the Fmoc N-hydroxysuccinimide ester (Fmoc-OSU) derivatization method to improve the sensitivity of glycan detection to characterize the total N-glycans in the mouse brain. A total of 96 N-glycan moieties were detected. An exhaustive examination of the relative abundance of N-glycans, coupled with a comparative analysis of differences, has uncovered discernible variations of statistical significance, including high mannose, fucosylated, sialylated, and galactosylated N-glycans. According to our investigations, a thorough and regionally specific cartography of glycans within the brain can facilitate the investigation of glycan-mediated mechanisms related to both the developmental trajectory and functional output of the brain. Additionally, this approach may serve as a basis for identifying potential biomarkers that are relevant to various brain-associated pathologies. Graphical Abstract.

Medienart:

Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:415

Enthalten in:

Analytical & bioanalytical chemistry - 415(2023), 23 vom: 15. Juli, Seite 5575-5588

Sprache:

Englisch

Beteiligte Personen:

Liu, Yuanyuan [VerfasserIn]
Han, Yutong [VerfasserIn]
Zhu, Wenjie [VerfasserIn]
Luo, Qingming [VerfasserIn]
Yuan, Jing [VerfasserIn]
Liu, Xin [VerfasserIn]

Links:

Volltext [lizenzpflichtig]

BKL:

35.23$jAnalytische Chemie: Allgemeines

35.71$jBiochemische Methoden

42.03$jMethoden und Techniken der Biologie

Themen:

Derivatization
MALDI-TOF/MS
Mouse brain
N-Glycan

RVK:

RVK Klassifikation

Anmerkungen:

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

doi:

10.1007/s00216-023-04848-8

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

OLC2145353003