MicroRNA-598 inhibition ameliorates LPS-induced acute lung injury in mice through upregulating Ebf1 expression

Abstract Acute lung injury is a critical acute respiratory distress syndrome (ARDS) with high morbidity and mortality. MicroRNAs (miRNAs) have been demonstrated to play important roles regulating acute lung injury development. In this study, we found that the expression of miR-598 was significantly upregulated in the lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury. Both loss-of-function and gain-of-function studies were performed to evaluate the function of miR-598 in acute lung injury. The results showed that inhibition of miR-598 attenuated inflammatory response, oxidative stress, and lung injury in mice treated with LPS, while overexpression of miR-598 exacerbated the LPS-induced acute lung injury. Mechanistically, transcription factor Early B-cell Factor-1 (Ebf1) was predicted and validated as a downstream target of miR-598. Overexpression of Ebf1 attenuated LPS-induced production of inflammatory cytokine TNF-α and IL-6, ameliorated LPS-induced oxidative stress, promoted proliferation, and inhibited apoptosis in murine lung epithelial-15 (MLE-15) cells. Moreover, we demonstrated that Ebf1 knockdown abolished the protective effect of miR-598 inhibition in LPS-treated MLE-15 cells. In summary, miR-598 inhibition ameliorates LPS-induced acute lung injury in mice through upregulating Ebf1 expression, which might provide potential therapeutic treatment for acute lung injury..

Medienart:

Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:160

Enthalten in:

Histochemistry and cell biology - 160(2023), 1 vom: 28. Apr., Seite 51-61

Sprache:

Englisch

Beteiligte Personen:

Zhao, Qi [VerfasserIn]
He, Lei [VerfasserIn]
Zhang, Junwu [VerfasserIn]
Li, Hong [VerfasserIn]
Li, Wanying [VerfasserIn]
Zhou, Zhihui [VerfasserIn]
Li, Yuanyuan [VerfasserIn]

Links:

Volltext [lizenzpflichtig]

Themen:

Acute lung injury
Ebf1
Inflammation
MiR-598
Oxidative stress

Anmerkungen:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

doi:

10.1007/s00418-023-02192-7

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

OLC2144230420