Evaluation of thin-slice abdominal DECT using deep-learning image reconstruction in 74 keV virtual monoenergetic images: an image quality comparison

Purpose To compare noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and image quality using deep-learning image reconstruction (DLIR) vs. adaptive statistical iterative reconstruction (ASIR-V) in 0.625 and 2.5 mm slice thickness gray scale 74 keV virtual monoenergetic (VM) abdominal dual-energy CT (DECT). Methods This retrospective study was approved by the institutional review board and regional ethics committee. We analysed 30 portal-venous phase abdominal fast kV-switching DECT (80/140kVp) scans. Data were reconstructed to ASIR-V 60% and DLIR-High at 74 keV in 0.625 and 2.5 mm slice thickness. Quantitative HU and noise assessment were measured within liver, aorta, adipose tissue and muscle. Two board-certified radiologists evaluated image noise, sharpness, texture and overall quality based on a five-point Likert scale. Results DLIR significantly reduced image noise and increased CNR as well as SNR compared to ASIR-V, when slice thickness was maintained (p < 0.001). Slightly higher noise of 5.5–16.2% was measured (p < 0.01) in liver, aorta and muscle tissue at 0.625 mm DLIR compared to 2.5 mm ASIR-V, while noise in adipose tissue was 4.3% lower with 0.625 mm DLIR compared to 2.5 mm ASIR-V (p = 0.08). Qualitative assessments demonstrated significantly improved image quality for DLIR particularly in 0.625 mm images. Conclusions DLIR significantly reduced image noise, increased CNR and SNR and improved image quality in 0.625 mm slice images, when compared to ASIR-V. DLIR may facilitate thinner image slice reconstructions for routine contrast-enhanced abdominal DECT. Graphical abstract.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:48

Enthalten in:

Abdominal radiology - 48(2023), 4 vom: 21. Feb., Seite 1536-1544

Sprache:

Englisch

Beteiligte Personen:

Xu, Jack J. [VerfasserIn]
Lönn, Lars [VerfasserIn]
Budtz-Jørgensen, Esben [VerfasserIn]
Jawad, Samir [VerfasserIn]
Ulriksen, Peter S. [VerfasserIn]
Hansen, Kristoffer L. [VerfasserIn]

Links:

Volltext [lizenzpflichtig]

Themen:

Computed tomography
Deep learning
Dual-energy CT
Image reconstruction

Anmerkungen:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

doi:

10.1007/s00261-023-03845-w

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

OLC2134547790