Efficient $ CO_{2} $ adsorption and mechanism on nitrogen-doped porous carbons

Abstract In this work, nitrogen-doped porous carbons (NACs) were fabricated as an adsorbent by urea modification and KOH activation. The $ CO_{2} $ adsorption mechanism for the NACs was then explored. The NACs are found to present a large specific surface area (1920.72–3078.99 $ m^{2} $·$ g^{−1} $) and high micropore percentage (61.60%–76.23%). Under a pressure of 1 bar, sample NAC-650-650 shows the highest $ CO_{2} $ adsorption capacity up to 5.96 and 3.92 mmol·$ g^{−1} $ at 0 and 25 °C, respectively. In addition, the $ CO_{2} $/$ N_{2} $ selectivity of NAC-650-650 is 79.93, much higher than the value of 49.77 obtained for the nonnitrogen-doped carbon AC-650-650. The $ CO_{2} $ adsorption capacity of the NAC-650-650 sample maintains over 97% after ten cycles. Analysis of the results show that the $ CO_{2} $ capacity of the NACs has a linear correlation (R2 = 0.9633) with the cumulative pore volume for a pore size less than 1.02 nm. The presence of nitrogen and oxygen enhances the $ CO_{2} $/$ N_{2} $ selectivity, and pyrrole-N and hydroxy groups contribute more to the $ CO_{2} $ adsorption. In situ Fourier transform infrared spectra analysis indicates that $ CO_{2} $ is adsorbed onto the NACs as a gas. Furthermore, the physical adsorption mechanism is confirmed by adsorption kinetic models and the isosteric heat, and it is found to be controlled by $ CO_{2} $ diffusion. The $ CO_{2} $ adsorption kinetics for NACs at room temperature and in pure $ CO_{2} $ is in accordance with the pseudo-first-order model and Avramís fractional-order kinetic model..

Medienart:

Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:15

Enthalten in:

Frontiers of chemical science and engineering - 15(2020), 3 vom: 21. Sept., Seite 493-504

Sprache:

Englisch

Beteiligte Personen:

Wang, Yanxia [VerfasserIn]
Hu, Xiude [VerfasserIn]
Guo, Tuo [VerfasserIn]
Hao, Jian [VerfasserIn]
Si, Chongdian [VerfasserIn]
Guo, Qingjie [VerfasserIn]

Links:

Volltext [lizenzpflichtig]

BKL:

58.00 / Chemische Technik: Allgemeines / Chemische Technik: Allgemeines

Themen:

Adsorption
Adsorption mechanism
CO
Kinetics
Nitrogen-doped
Porous carbon

Anmerkungen:

© Higher Education Press 2020

doi:

10.1007/s11705-020-1967-0

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

OLC2125526603