Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance

Abstract Salt stress is one of the major abiotic stress, impedes plant photosynthetic processes, changes root architecture to impact leaf water status, and reduces potassium uptake and $ K^{+} $/$ Na^{+} $ ratio. Arbuscular mycorrhizal (AM) fungus and extra potassium promote plants tolerance of salt stress, respectively. However, little is known about the combined influence of AM fungus and extra potassium under salt stress. In current study, we analyzed the effects of AM fungus (Rhizophagus irregularis), potassium application (0, 1.6, and 6.4 mM $ K^{+} $), and salt stress (0 and 100 mM NaCl) on photosynthesis, leaf water status, root architecture, concentrations of $ Na^{+} $ and $ K^{+} $, shoot/root $ Na^{+} $, $ K^{+} $/$ Na^{+} $ homeostasis, and the relative expression of genes related to $ K^{+} $ uptake and transport (LbHAK, LbKT1, and LbSKOR) of Lycium barbarum. Under salt stress, inoculation of R. irregularis and application of potassium increased the net photosynthetic rate and stomatal conductance and reduced the intercellular $ CO_{2} $ concentration to improve photosynthesis. Inoculation of R. irregularis and application of potassium increased leaf relative water content and reduced water saturation deficit. Inoculation of R. irregularis and potassium application also modified root architecture, particularly in terms of root elongation and SRL reduction. Moreover, they increased $ K^{+} $ concentration, but evidently reduced $ Na^{+} $ transport to shoot. Regardless of salinity, AM plants had a significant decrease in shoot/root $ Na^{+} $ ratio compared with NM plants under each potassium condition. Additionally, R. irregularis and extra potassium upregulated the relative expressions of LbHAK, LbKT1, and LbSKOR, which are involved in $ K^{+} $/$ Na^{+} $ homeostasis. This study suggests that the beneficial effects of R. irregularis and extra potassium on photosynthetic capacity, root architecture, and $ K^{+} $/$ Na^{+} $ homeostasis improved the growth and salt tolerance of L. barbarum under salt stress..

Medienart:

Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:41

Enthalten in:

Journal of plant growth regulation - 41(2021), 7 vom: 08. Sept., Seite 2980-2991

Sprache:

Englisch

Beteiligte Personen:

Han, Xia [VerfasserIn]
Wang, Yuanyuan [VerfasserIn]
Cheng, Kang [VerfasserIn]
Zhang, Haoqiang [VerfasserIn]
Tang, Ming [VerfasserIn]

Links:

Volltext [lizenzpflichtig]

Themen:

Ionic homeostasis
Photosynthesis
Root architecture
Water status

Anmerkungen:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

doi:

10.1007/s00344-021-10489-x

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

OLC2079580108