Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis

Malignant osteolysis associated with inoperable primary bone tumors and multifocal skeletal metastases remains a challenging clinical problem in cancer patients. Nanomedicine that is able to target and deliver therapeutic agents to diseased bone sites could potentially provide an effective treatment option for different types of skeletal cancers. Here, we report the development of polylactide nanoparticles (NPs) loaded with doxorubicin (Doxo) and coated with bone-seeking pamidronate (Pam) for the targeted treatment of malignant skeletal tumors. In vivo biodistribution of radiolabeled targeted Pam-NPs demonstrated enhanced bone tumor accumulation and prolonged retention compared with nontargeted NPs. In a murine model of focal malignant osteolysis, Pam-functionalized, Doxo-loaded NPs (Pam-Doxo-NPs) significantly attenuated localized osteosarcoma (OS) progression compared with nontargeted Doxo-NPs. Importantly, we report on the first evaluation to our knowlege of Pam-Doxo-NPs in dogs with OS, which possess tumors of anatomic size and physiology comparable to those in humans. The repeat dosing of Pam-Doxo-NPs in dogs with naturally occurring OS indicated the therapeutic was well tolerated without hematologic, nonhematologic, and cardiac toxicities. By nuclear scintigraphy, the biodistribution of Pam-Doxo-NPs demonstrated malignant bone-targeting capability and exerted measurable anticancer activities as confirmed with percent tumor necrosis histopathology assessment..

Medienart:

Artikel

Erscheinungsjahr:

2016

Erschienen:

2016

Enthalten in:

Zur Gesamtaufnahme - volume:113

Enthalten in:

Proceedings of the National Academy of Sciences of the United States of America - 113(2016), 32, Seite E4601

Sprache:

Englisch

Beteiligte Personen:

Yin, Qian [VerfasserIn]
Tang, Li [Sonstige Person]
Cai, Kaimin [Sonstige Person]
Tong, Rong [Sonstige Person]
Sternberg, Rachel [Sonstige Person]
Yang, Xujuan [Sonstige Person]
Dobrucki, Lawrence W [Sonstige Person]
Borst, Luke B [Sonstige Person]
Kamstock, Debra [Sonstige Person]
Song, Ziyuan [Sonstige Person]
Helferich, William G [Sonstige Person]
Cheng, Jianjun [Sonstige Person]
Fan, Timothy M [Sonstige Person]

Links:

Volltext
www.ncbi.nlm.nih.gov
search.proquest.com

Themen:

Bone cancer
Disodium pamidronate
Dogs
Dosage and administration
Drug therapy
Metastasis
Nanoparticles
Osteolysis
Prescription drugs

doi:

10.1073/pnas.1603316113

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

OLC1983742910