Comparative study of eco-friendly wire mesh configurations to enhance sustainability in reinforced concrete structures

© 2024. The Author(s)..

Recent and past studies mainly focus on reducing the dead weight of structure; therefore, they considered lightweight aggregate concrete (LWAC) which reduces the dead weight but also affects the strength parameters. Therefore, the current study aims to use varied steel wire meshes to investigate the effects of LWAC on mechanical properties. Three types of steel wire mesh are used such as hexagonal (chicken), welded square, and expanded metal mesh, in various layers and orientations in LWAC. Numerous mechanical characteristics were examined, including energy absorption (EA), compressive strength (CS), and flexural strength (FS). A total of ninety prisms and thirty-three cubes were made. For the FS test, forty-five 100 × 100 × 500 mm prism samples were poured, thirty-three 150 × 150 × 150 mm cube samples were made, and forty-five 400 × 300 × 75 mm EA specimens were costed for fourteen days of curing. The experimental findings demonstrate that the FS was enhanced by adding additional forces that spread the forces over the section. One layer of chicken, welded, and expanded metal mesh enhances the FS by 52.96%, 23.76%, and 22.2%, respectively. In comparison to the remaining layers, the FS in a single-layer hexagonal wire mesh has the maximum strength, 29.49 MPa. The hexagonal wire mesh with a single layer had the greatest CS, measuring 36.56 MPa. When all three types of meshes are combined, the CS does not vary in this way and is estimated to be 29.79 MPa. In the combination of three layers, the chicken and expanded wire mesh had the most energy recorded prior to final failure, which was 1425.6 and 1108.7 J, whereas it was found the highest 752.3 J for welded square wire mesh. The energy absorption for the first layer with hexagonal wire mesh increased by 82.81% prior to the crack and by 88.34% prior to the ultimate failure. Overall, it was determined and suggested that hexagonal wire mesh works better than expanded and welded wire meshes.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:14

Enthalten in:

Scientific reports - 14(2024), 1 vom: 17. Apr., Seite 8818

Sprache:

Englisch

Beteiligte Personen:

Mebrahtom, Misgina [VerfasserIn]
Fissha, Yewuhalashet [VerfasserIn]
Ali, Mujahid [VerfasserIn]
Gebretsadik, Angesom [VerfasserIn]
Kide, Yemane [VerfasserIn]
Nguse, Zaid [VerfasserIn]
Gebrehiwot, Zemicael [VerfasserIn]
Flores, Erick Saavedra [VerfasserIn]
Avudaiappan, Siva [VerfasserIn]
Ikeda, Hajime [VerfasserIn]

Links:

Volltext

Themen:

Eco-friendly
Journal Article
Lightweight aggregate concrete
Strength properties
Sustainability
Welded square wire mesh

Anmerkungen:

Date Revised 25.04.2024

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1038/s41598-024-59050-2

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM371166853