Motif-based community detection in heterogeneous multilayer networks

© 2024. The Author(s)..

Multilayer networks composed of intralayer edges and interlayer edges are an important type of complex networks. Considering the heterogeneity of nodes and edges, it is necessary to design more reasonable and diverse community detection methods for multilayer networks. Existing research on community detection in multilayer networks mainly focuses on multiplexing networks (where the nodes are homogeneous and the edges are heterogeneous), but few studies have focused on heterogeneous multilayer networks where both nodes and edges represent different semantics. In this paper, we studied community detection on heterogeneous multilayer networks and proposed a motif-based detection algorithm. First, the communities and motifs of multilayer networks are defined, especially the interlayer motifs. Then, the modularity of multilayer networks based on these motifs is designed, and the community structure of the multilayer network is detected by maximizing the modularity of multilayer networks. Finally, we verify the effectiveness of the detection algorithm on synthetic networks. In the experiments on synthetic networks, comparing with the classical community detection algorithms (without considering interlayer heterogeneity), the motif-based modularity community detection algorithm can obtain better results under different evaluation indexes, and we found that there exists a certain relationship between motifs and communities. In addition, the proposed algorithm is applied in the empirical network, which shows its practicability in the real world. This study provides a solution for the investigation of heterogeneous information in multilayer networks.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:14

Enthalten in:

Scientific reports - 14(2024), 1 vom: 16. Apr., Seite 8769

Sprache:

Englisch

Beteiligte Personen:

Liu, Yafang [VerfasserIn]
Li, Aiwen [VerfasserIn]
Zeng, An [VerfasserIn]
Zhou, Jianlin [VerfasserIn]
Fan, Ying [VerfasserIn]
Di, Zengru [VerfasserIn]

Links:

Volltext

Themen:

Journal Article

Anmerkungen:

Date Revised 25.04.2024

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1038/s41598-024-59120-5

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM371166373