3D Printers in Hospitals : Bacterial Contamination of Common and Antimicrobial 3D-Printed Material

COVID-19 has presented hospitals with unique challenges. A SHEA Research Network survey showed that 40% reported "limited" or worse levels of personal protective equipment (PPE), and 13% were self-producing PPE to address those deficits, including 3D-printed items. However, we do not know how efficiently, if at all, 3D-printed materials can be disinfected. Additionally, two filaments, PLACTIVE and BIOGUARD, claim to be antimicrobial; they use copper nanocomposites and silver ions to reduce bacterial populations. We assess how PLACTIVE and BIOGUARD may be contaminated and how well they reduce contamination, and how readily Polylactic Acid (PLA), a standard 3D-printed material, may be disinfected. 3D-printed materials, including PLACTIVE and BIOGUARD, are readily contaminated with bacteria that are common in hospitals and can sustain that contamination. Our findings reveal that the levels of contamination on PLACTIVE and BIOGUARD can vary under specific conditions such as layer height or bacterial contact time, sometimes surpassing or falling short of PLA. However, disinfected disks had lower overall CFU averages than those that were not, but the level of disinfection was variable, and bacterial populations recovered hours after disinfection application. Proper disinfection and using appropriate 3D-printed materials are essential to limit bacterial contamination. 3D printers and their products can be invaluable for hospitals, especially when supplies are low, and healthcare worker safety is paramount. Environmental services should be made aware of the presence of antimicrobial 3D-printed materials, and patients should be discouraged from printing their own items for use in hospital environments.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - year:2024

Enthalten in:

bioRxiv : the preprint server for biology - (2024) vom: 31. März

Sprache:

Englisch

Beteiligte Personen:

Jackson, Katelin C [VerfasserIn]
Clancey, Erin [VerfasserIn]
Call, Douglas R [VerfasserIn]
Lofgren, Eric [VerfasserIn]

Links:

Volltext

Themen:

Preprint

Anmerkungen:

Date Revised 25.04.2024

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1101/2024.03.30.587440

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370752376