Right main pulmonary artery distensibility on dynamic ventilation CT and its association with respiratory function

© 2024. The Author(s)..

BACKGROUND: Heartbeat-based cross-sectional area (CSA) changes in the right main pulmonary artery (MPA), which reflects its distensibility associated with pulmonary hypertension, can be measured using dynamic ventilation computed tomography (DVCT) in patients with and without chronic obstructive pulmonary disease (COPD) during respiratory dynamics. We investigated the relationship between MPA distensibility (MPAD) and respiratory function and how heartbeat-based CSA is related to spirometry, mean lung density (MLD), and patient characteristics.

METHODS: We retrospectively analyzed DVCT performed preoperatively in 37 patients (20 female and 17 males) with lung cancer aged 70.6 ± 7.9 years (mean ± standard deviation), 18 with COPD and 19 without. MPA-CSA was separated into respiratory and heartbeat waves by discrete Fourier transformation. For the cardiac pulse-derived waves, CSA change (CSAC) and CSA change ratio (CSACR) were calculated separately during inhalation and exhalation. Spearman rank correlation was computed.

RESULT: In the group without COPD as well as all cases, CSACR exhalation was inversely correlated with percent residual lung volume (%RV) and RV/total lung capacity (r = -0.68, p = 0.003 and r = -0.58, p = 0.014). In contrast, in the group with COPD, CSAC inhalation was correlated with MLDmax and MLD change rate (MLDmax/MLDmin) (r = 0.54, p = 0.020 and r = 0.64, p = 0.004) as well as CSAC exhalation and CSACR exhalation.

CONCLUSION: In patients with insufficient exhalation, right MPAD during exhalation was decreased. Also, in COPD patients with insufficient exhalation, right MPAD was reduced during inhalation as well as exhalation, which implied that exhalation impairment is a contributing factor to pulmonary hypertension complicated with COPD.

RELEVANCE STATEMENT: Assessment of MPAD in different respiratory phases on DVCT has the potential to be utilized as a non-invasive assessment for pulmonary hypertension due to lung disease and/or hypoxia and elucidation of its pathogenesis.

KEY POINTS: • There are no previous studies analyzing all respiratory phases of right main pulmonary artery distensibility (MPAD). • Patients with exhalation impairment decreased their right MPAD. • Analysis of MPAD on dynamic ventilation computed tomography contributes to understanding the pathogenesis of pulmonary hypertension due to lung disease and/or hypoxia in patients with expiratory impairment.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:8

Enthalten in:

European radiology experimental - 8(2024), 1 vom: 04. Apr., Seite 50

Sprache:

Englisch

Beteiligte Personen:

Oki, Tatsuya [VerfasserIn]
Nagatani, Yukihiro [VerfasserIn]
Ishida, Shota [VerfasserIn]
Hashimoto, Masayuki [VerfasserIn]
Oshio, Yasuhiko [VerfasserIn]
Hanaoka, Jun [VerfasserIn]
Uemura, Ryo [VerfasserIn]
Watanabe, Yoshiyuki [VerfasserIn]

Links:

Volltext

Themen:

Hypertension (pulmonary)
Journal Article
Pulmonary artery
Pulmonary disease (chronic obstructive)
Tomography (x-ray computed)
Ventilation (Fourier analysis)

Anmerkungen:

Date Completed 05.04.2024

Date Revised 06.04.2024

published: Electronic

Citation Status MEDLINE

doi:

10.1186/s41747-024-00441-5

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370598407