Calcium channel inhibitor and extracellular calcium improve aminoglycoside-induced hair cell loss in zebrafish

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature..

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 μM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 μM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 μM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 μM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - year:2024

Enthalten in:

Archives of toxicology - (2024) vom: 02. Apr.

Sprache:

Englisch

Beteiligte Personen:

Chen, Liao-Chen [VerfasserIn]
Chen, Hwei-Hsien [VerfasserIn]
Chan, Ming-Huan [VerfasserIn]

Links:

Volltext

Themen:

Aminoglycoside
Calcium
Hair cell
Journal Article
Ototoxicity
Verapamil
Zebrafish

Anmerkungen:

Date Revised 02.04.2024

published: Print-Electronic

Citation Status Publisher

doi:

10.1007/s00204-024-03720-7

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370533658