Application of a water-energy-carbon coupling index to evaluate the long-term operational stability of the anaerobic-anoxic-oxic-membrane bioreactor (A2/O-MBR) process under the influence of rainstorms

Copyright © 2024. Published by Elsevier Ltd..

In the context of global climate change, sudden rainstorms and typhoons induce fluctuations in hydraulic shocks to wastewater treatment plants (WWTPs) in coastal areas, causing two challenges of stable effluent quality and low-carbon operation. We established a quantitative evaluation method for resistance of wastewater treatment processes to hydraulic shocks based on the water-energy-carbon nexus using operational data from a WWTP in southeast coastal China from July 2018 to December 2022. The effects of hydraulic shocks on the operational stability of the anaerobic-anoxic-oxic-membrane bioreactor (A2/O-MBR) process were analyzed following five steps. The results showed that the gray water footprint (GWF) of the process was 9.3% lower than that of the A2/O process. The energy footprint (ENF) and carbon footprint (CF) were approximately 2.1 times and 1.7 times higher than those of the A2/O process, respectively. The resistance to hydraulic shocks of the A2/O-MBR process is approximately 5.5 times higher than that of the A2/O process. In conclusion, the A2/O-MBR process exhibits higher process operational stability when subjected to hydraulic shocks, which is more conducive to the efficient and stable operation of WWTPs in rainstorm and typhoon-prone areas. The evaluation methodology provides qualitative technical support for selecting upgrading processes for WWTPs in different regions.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:255

Enthalten in:

Water research - 255(2024) vom: 15. Apr., Seite 121489

Sprache:

Englisch

Beteiligte Personen:

Yu, Lian [VerfasserIn]
Peng, Kaiming [VerfasserIn]
Huang, Yizhen [VerfasserIn]
Chen, Feng [VerfasserIn]
Chen, Shoubin [VerfasserIn]
Xia, Yulong [VerfasserIn]
Huang, Xiangfeng [VerfasserIn]
Ni, Xiaojing [VerfasserIn]
Guo, Ru [VerfasserIn]
Cai, Chen [VerfasserIn]
Liu, Jia [VerfasserIn]

Links:

Volltext

Themen:

A(2)/O-MBR process
Hydraulic shocks
Journal Article
Operational stability
Water-energy-carbon nexus

Anmerkungen:

Date Revised 22.04.2024

published: Print-Electronic

Citation Status In-Process

doi:

10.1016/j.watres.2024.121489

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370420144