JMJD3 activation contributes to renal protection and regeneration following acute kidney injury in mice

© 2024 Federation of American Societies for Experimental Biology..

We have recently demonstrated that Jumonji domain-containing protein D3 (JMJD3), a histone demethylase of histone H3 on lysine 27 (H3K27me3), is protective against renal fibrosis, but its role in acute kidney injury (AKI) remains unexplored. Here, we report that JMJD3 activity is required for renal protection and regeneration in murine models of AKI induced by ischemia/reperfusion (I/R) and folic acid (FA). Injury to the kidney upregulated JMJD3 expression and induced expression of H3K27me3, which was coincident with renal dysfunction, renal tubular cell injury/apoptosis, and proliferation. Blocking JMJD3 activity by GSKJ4 led to worsening renal dysfunction and pathological changes by aggravating tubular epithelial cell injury and apoptosis in both murine models of AKI. JMJD3 inhibition by GSKJ4 also reduced renal tubular cell proliferation and suppressed expression of cyclin E and phosphorylation of CDK2, but increased p21 expression in the injured kidney. Furthermore, inactivation of JMJD3 enhanced I/R- or FA-induced expression of TGF-β1, vimentin, and Snail, phosphorylation of Smad3, STAT3, and NF-κB, and increased renal infiltration by F4/80 (+) macrophages. Finally, GSKJ4 treatment caused further downregulation of Klotho, BMP-7, Smad7, and E-cadherin, all of which are associated with renal protection and have anti-fibrotic effects. Therefore, these data provide strong evidence that JMJD3 activation contributes to renal tubular epithelial cell survival and regeneration after AKI.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:38

Enthalten in:

FASEB journal : official publication of the Federation of American Societies for Experimental Biology - 38(2024), 7 vom: 15. Apr., Seite e23583

Sprache:

Englisch

Beteiligte Personen:

Yu, Chao [VerfasserIn]
Tang, Jinhua [VerfasserIn]
Yu, Jianjun [VerfasserIn]
Wang, Yanjin [VerfasserIn]
Liu, Na [VerfasserIn]
Dong, Zheng [VerfasserIn]
Zhuang, Shougang [VerfasserIn]

Links:

Volltext

Themen:

Acute kidney injury
Apoptosis
Folic acid
H3K27me3
Histones
Ischemia/reperfusion
Journal Article
Jumonji domain‐containing protein D3
Proliferation
Renal regeneration

Anmerkungen:

Date Completed 01.04.2024

Date Revised 05.04.2024

published: Print

Citation Status MEDLINE

doi:

10.1096/fj.202300681R

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370411676