An Individual Barrier Enclosure Actively Removing Aerosols for Airborne Isolation : A Vacuum Tent

Copyright © 2024 by Daedalus Enterprises..

BACKGROUND: Aerosol barrier enclosure systems have been designed to prevent airborne contamination, but their safety has been questioned. A vacuum tent was designed with active continuous suctioning to minimize risks of aerosol dispersion. We tested its efficacy, risk of rebreathing, and usability on a bench, in healthy volunteers, and in an ergonomic clinical assessment study.

METHODS: First, a manikin with airway connected to a breathing simulator was placed inside the vacuum tent to generate active breathing, cough, and CO2 production; high-flow nasal cannula (HFNC) was applied in the manikin's nares. Negative pressure was applied in the vacuum tent's apex port using wall suction. Fluorescent microparticles were aerosolized in the vacuum tent for qualitative assessment. To quantify particles inside and around vacuum tent (aerosol retention), an airtight aerosol chamber with aerosolized latex microparticles was used. The vacuum tent was tested on healthy volunteers breathing with and without HFNC. Last, its usability was assessed in 5 subjects by 5 different anesthesiologists for delivery of full anesthesia, including intubation and extubation.

RESULTS: The vacuum tent was adjusted until no leak was visualized using fluorescent particles. The efficacy in retaining microparticles was confirmed quantitatively. CO2 accumulation inside the vacuum tent showed an inverse correlation with the suction flow in all conditions (normal breathing and HFNC 30 or 60 L/min) in bench and healthy volunteers. Particle removal efficacy and safe breathing conditions (CO2, temperature) were reached when suctioning was at least 60 L/min or 20 L/min > HFNC flow. Five subjects were successfully intubated and anesthetized without ergonomic difficulties and with minimal interference with workflow and an excellent overall assessment by the anesthesiologists.

CONCLUSIONS: The vacuum tent effectively minimized aerosol dispersion. Its continuous suction system set at a high suction flow was crucial to avoid the spread of aerosol particles and CO2 rebreathing.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:69

Enthalten in:

Respiratory care - 69(2024), 4 vom: 27. März, Seite 395-406

Sprache:

Englisch

Beteiligte Personen:

Vieira, Fernando N [VerfasserIn]
Masy, Veronique [VerfasserIn]
LaRue, Ryan J [VerfasserIn]
Laengert, Scott E [VerfasserIn]
De Lannoy, Charles F [VerfasserIn]
Rodrigues, Antenor [VerfasserIn]
Sklar, Michael C [VerfasserIn]
Lo, Nick [VerfasserIn]
Petrosoniak, Andrew [VerfasserIn]
Rezende-Neto, Joao [VerfasserIn]
Brochard, Laurent J [VerfasserIn]

Links:

Volltext

Themen:

142M471B3J
Aerosolized particles and droplets
Aerosols
Capnography
Carbon Dioxide
Infectious disease droplet transmission
Journal Article
Microspheres
Patient-to-professional disease transmission
Respiratory aerosols and droplets
Respiratory protective devices

Anmerkungen:

Date Completed 29.03.2024

Date Revised 29.03.2024

published: Electronic

Citation Status MEDLINE

doi:

10.4187/respcare.11094

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370275748