Cell-Cycle-related Protein Centromere Protein F Deficiency Inhibits Cervical Cancer Cell Growth by Inducing Ferroptosis Via Nrf2 Inactivation

© 2024. The Author(s)..

Cervical cancer (CC) is one of the severe cancers that pose a threat to women's health and result in death. CENPF, the centromere protein F, plays a crucial role in mitosis by regulating numerous cellular processes, such as chromosome segregation during mitosis. According to bioinformatics research, CENPF serves as a master regulator that is upregulated and activated in cervical cancer. Nevertheless, the precise biological mechanism that CENPF operates in CC remains unclear. The aim of this study was to analyze the function of CENPF on cervical cancer and its mechanism. We conducted immunohistochemistry and western blot analysis to examine the expression levels of CENPF in both cervical cancer tissues and cells. To explore the hidden biological function of CENPF in cell lines derived from CC, we applied lentivirus transfection to reduce CENPF manifestation. CENPF's main role is to regulate ferroptosis which was assessed by analyzing Reactive Oxygen Species (ROS), malonaldehyde (MDA), etc. The vitro findings were further validated through a subcutaneous tumorigenic nude mouse model. Our research finding indicates that there is an apparent upregulation of CENPF in not merely tumor tissues but also cell lines in the carcinomas of the cervix. In vitro and vivo experimental investigations have demonstrated that the suppression of CENPF can impede cellular multiplication, migration, and invasion while inducing ferroptosis. The ferroptosis induced by CENPF inhibition in cervical cancer cell lines is likely mediated through the Nrf2/HO-1 pathway. The data herein come up with the opinion that CENPF may have a crucial role in influencing anti-cervical cancer effects by inducing ferroptosis via the triggering of the Nrf2/HO-1 signaling pathway.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - year:2024

Enthalten in:

Cell biochemistry and biophysics - (2024) vom: 27. März

Sprache:

Englisch

Beteiligte Personen:

Tang, Xin Hui [VerfasserIn]
Zhao, Tian Nan [VerfasserIn]
Guo, Li [VerfasserIn]
Liu, Xin Yue [VerfasserIn]
Zhang, Wei Na [VerfasserIn]
Zhang, Ping [VerfasserIn]

Links:

Volltext

Themen:

CENPF
Cell cycle
Cervical cancer
Ferroptosis
Journal Article
Nuclear factor E2-related factor 2

Anmerkungen:

Date Revised 27.03.2024

published: Print-Electronic

Citation Status Publisher

doi:

10.1007/s12013-024-01251-7

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370261267