Impact toughness and dynamic constitutive model of geopolymer concrete after water saturation

© 2024. The Author(s)..

The dynamic compression test of geopolymer concrete (GC) before and after water saturation was carried out by the split Hopkinson pressure bar (SHPB). And the effects of water saturation and strain rate on impact toughness of GC were studied. Based on Weibull statistical damage distribution theory, the dynamic constitutive model of GC after water saturation was constructed. The results show that the dynamic peak strain and specific energy absorption of GC have strain rate strengthening effect before or after water saturation. The impact toughness of GC decreases after water saturation. The size distribution of GC fragments has fractal characteristics, and the fractal dimension of GC fragments after water saturation is smaller than that before water saturation. The dynamic constitutive model based on Weibull statistical damage distribution theory can accurately describe the impact mechanical behavior of GC after water saturation, and the model fitting curves are in good agreement with the experimental stress-strain curves.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:14

Enthalten in:

Scientific reports - 14(2024), 1 vom: 26. März, Seite 7117

Sprache:

Englisch

Beteiligte Personen:

Yan, Tiecheng [VerfasserIn]
Yin, Xiangxiang [VerfasserIn]
Zhang, Xingyuan [VerfasserIn]

Links:

Volltext

Themen:

Constitutive model
Geopolymer concrete
Impact toughness
Journal Article
Statistical damage distribution theory
Water saturation

Anmerkungen:

Date Revised 29.03.2024

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1038/s41598-024-57760-1

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370214927