Bridging Atom Engineering for Low-Temperature Oxygen Activation in a Robust Metal-Organic Framework

© 2024 Wiley‐VCH GmbH..

Achieving active site engineering at the atomic level poses a significant challenge in the design and optimization of catalysts for energy-efficient catalytic processes, especially for a reaction with two reactants competitively absorbed on catalytic active sites. Herein we show an example that tailoring the local environment of cobalt sites in a robust metal-organic framework through substituting the bridging atom from -Cl to -OH group leads to a highly active catalyst for oxygen activation in an oxidation reaction. Comprehensive characterizations reveal that this variation imparts drastic changes on the electronic structure of metal centers, the competitive reactant adsorption behavior, and the intermediate formation. As a result, exceptional low-temperature CO oxidation performance was achieved with T25(Temperature for 25% conversion) = 35°C and T100 (Temperature for 100% conversion) = 150°C, which stands out from existing MOF-based catalysts and even rivals many noble metal catalysts. This work provides a guidance for the rational design of catalysts for efficient oxygen activation for an oxidation reaction.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - year:2024

Enthalten in:

Angewandte Chemie (International ed. in English) - (2024) vom: 24. März, Seite e202400160

Sprache:

Englisch

Beteiligte Personen:

Wang, Rui [VerfasserIn]
Wang, Zi-Yu [VerfasserIn]
Zhang, Yuan [VerfasserIn]
Shaheer, A R Mahammed [VerfasserIn]
Liu, Tian-Fu [VerfasserIn]
Cao, Rong [VerfasserIn]

Links:

Volltext

Themen:

Bridging Atom Engineering
Journal Article
Metal Organic Frameworks
Oxygen activation

Anmerkungen:

Date Revised 24.03.2024

published: Print-Electronic

Citation Status Publisher

doi:

10.1002/anie.202400160

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370126386