Selenium increases antimony uptake in ramie (Boehmeria nivea L.) by enhancing the physiological, antioxidative, and ionomic mechanisms

Copyright © 2024 Elsevier Ltd. All rights reserved..

Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction. Under severe Sb contamination, the growth of ramie may be inhibited. Strategies are needed to enhance Sb accumulation in ramie's aboveground parts and improve tolerance to Sb stress. Considering the beneficial effects of selenium (Se) on plant growth and enhancing resistance to abiotic stresses, this study aimed to investigate the potential use of Se in enhancing Sb uptake by ramie. We investigated the effects of Se (0.5, 1, 2, 5, or 10 μM) on ramie growth, Sb uptake and speciation, antioxidant responses, and ionomic profiling in ramie under 10 mg/L of SbIII or antimonate (SbV) stresses. Results revealed that the addition of 0.5 μM Se significantly increased shoot biomass by 75.73% under SbIII stress but showed minimal effects on shoot and root length in both SbIII and SbV treatments. Under SbIII stress, 2 μM Se significantly enhanced Sb concentrations by 48.42% in roots and 62.88% in leaves. In the case of SbV exposure, 10 μM Se increased Sb content in roots by 42.57%, and 1 μM Se led to a 91.74% increase in leaves. The speciation analysis suggested that Se promoted the oxidation of SbIII to less toxic SbV to mitigate Sb toxicity. Additionally, Se addition effectively minimized the excess reactive oxygen species produced by Sb exposure, with the lowest malondialdehyde (MDA) content at 0.5 μM Se under SbIII and 2 μM Se under SbV, by activating antioxidant enzymes including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Ionomic analysis revealed that Se helped in maintaining the homeostasis of certain nutrient elements, including magnesium, potassium (K), calcium (Ca), iron (Fe), and copper (Cu) in the SbIII-treated roots and K and manganese (Mg) in the SbV-treated roots. The results suggest that low concentrations of Se can be employed to enhance the phytoremediation of Sb-contaminated soils using ramie.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:356

Enthalten in:

Journal of environmental management - 356(2024) vom: 05. Apr., Seite 120694

Sprache:

Englisch

Beteiligte Personen:

Lu, Yi [VerfasserIn]
Peng, Fangyuan [VerfasserIn]
Wang, Yingyang [VerfasserIn]
Yang, Zhaoguang [VerfasserIn]
Li, Haipu [VerfasserIn]

Links:

Volltext

Themen:

9IT35J3UV3
Antimonate
Antimonite
Antimony
Antioxidants
Antioxidative enzyme
Essential element
H6241UJ22B
Journal Article
Phytoremediation
Ramie
Selenium

Anmerkungen:

Date Completed 08.04.2024

Date Revised 08.04.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.jenvman.2024.120694

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370118383