Simulating the behavior of antioxidant to explore the mechanisms of oxidative stability in Pickering emulsion

Copyright © 2023 Elsevier Ltd. All rights reserved..

This study explores effective strategies for bolstering emulsion oxidative stability via optimized interfacial distribution of varying hydrophobicity antioxidants (gallic acid, propyl gallate, octyl gallate) in zein nanoparticle (ZP) stabilized Pickering emulsions. Experimental and simulation methods revealed that antioxidant (AO) with higher hydrophobicity or loaded into ZP demonstrated stronger hydrogen bonding and van der Waals interactions with ZP. This increased interfacial loading of antioxidants resulted in improved oxidative stability in Pickering emulsions. The flow, distribution and orientation of AO, as revealed by dissipative dynamics simulations, highlighted the role of hydrophobic interactions during initial AO migration, influenced by varied alkyl chain lengths. Subsequent interface rearrangements arose from conservative force interactions between the AO's phenol hydroxyl ends and ZP. These findings inform effective interfacial engineering to optimize antioxidant efficiency, guiding practical applications in emulsion systems for improved oxidative stability.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:447

Enthalten in:

Food chemistry - 447(2024) vom: 30. Apr., Seite 138291

Sprache:

Englisch

Beteiligte Personen:

Chen, Zhibin [VerfasserIn]
Zhao, Zijun [VerfasserIn]
Wang, Wenbo [VerfasserIn]
Ye, Qianyi [VerfasserIn]
Xiao, Jie [VerfasserIn]

Links:

Volltext

Themen:

Antioxidants
Dissipative particle dynamic
Emulsions
Interface-phase distribution
Journal Article
Oxidative stability
Pickering emulsion
Pseudophase kinetic model
Targeting antioxidants

Anmerkungen:

Date Completed 10.04.2024

Date Revised 10.04.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.foodchem.2023.138291

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM370030524