Dislocation flow turbulence simultaneously enhances strength and ductility

Multi-principal element alloys (MPEAs) exhibit outstanding strength attributed to the complex dislocation dynamics as compared to conventional alloys. Here, we develop an atomic-lattice-distortion-dependent discrete dislocation dynamics framework consisted of random field theory and phenomenological dislocation model to investigate the fundamental deformation mechanism underlying massive dislocation motions in body-centered cubic MPEA. Amazingly, the turbulence of dislocation speed is identified in light of strong heterogeneous lattice strain field caused by short-range ordering. Importantly, the vortex from dislocation flow turbulence not only acts as an effective source to initiate dislocation multiplication but also induces the strong local pinning trap to block dislocation movement, thus breaking the strength-ductility trade-off.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:121

Enthalten in:

Proceedings of the National Academy of Sciences of the United States of America - 121(2024), 13 vom: 26. März, Seite e2316912121

Sprache:

Englisch

Beteiligte Personen:

Chen, Yang [VerfasserIn]
Feng, Hui [VerfasserIn]
Li, Jia [VerfasserIn]
Liu, Bin [VerfasserIn]
Jiang, Chao [VerfasserIn]
Liu, Yong [VerfasserIn]
Fang, Qihong [VerfasserIn]
Liaw, Peter K [VerfasserIn]

Links:

Volltext

Themen:

Chemical short-range order
Dislocation flow turbulence
Journal Article
Multi-principal element alloy
Strength and ductility
Vortex

Anmerkungen:

Date Revised 05.04.2024

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1073/pnas.2316912121

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369923324