3D Printed Porous Zirconia Biomaterials based on Triply Periodic Minimal Surfaces Promote Osseointegration In Vitro by Regulating Osteoimmunomodulation and Osteo/Angiogenesis

The triply periodic minimal surface (TPMS) is a highly useful structure for bone tissue engineering owing to its nearly nonexistent average surface curvature, high surface area-to-volume ratio, and exceptional mechanical energy absorption properties. However, limited literature is available regarding bionic zirconia implants using the TPMS structure for bone regeneration. Herein, we employed the digital light processing (DLP) technology to fabricate four types of zirconia-based TPMS structures: P-cell, S14, IWP, and Gyroid. For cell proliferation, the four porous TPMS structures outperformed the solid zirconia group (P-cell > S14 > Gyroid > IWP > ZrO2). In vitro assessments on the biological responses and osteogenic properties of the distinct porous surfaces identified the IWP and Gyroid structures as promising candidates for future clinical applications of porous zirconia implants because of their superior osteogenic capabilities (IWP > Gyroid > S14 > P-cell > ZrO2) and mechanical properties (ZrO2 > IWP > Gyroid > S14 > P-cell). Furthermore, the physical properties of the IWP/Gyroid surface had more substantial effects on bone immune regulation by reducing macrophage M1 phenotype polarization while increasing M2 phenotype polarization compared with the solid zirconia surface. Additionally, the IWP and Gyroid groups exhibited enhanced immune osteogenesis and angiogenesis abilities. Collectively, these findings highlight the substantial impact of topology on bone/angiogenesis and immune regulation in promoting bone integration.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:16

Enthalten in:

ACS applied materials & interfaces - 16(2024), 12 vom: 27. März, Seite 14548-14560

Sprache:

Englisch

Beteiligte Personen:

Jiang, Chunlan [VerfasserIn]
Ding, Mengting [VerfasserIn]
Zhang, Jin [VerfasserIn]
Zhu, Chenyuan [VerfasserIn]
Qin, Wei [VerfasserIn]
Zhao, Zhe [VerfasserIn]
Jiao, Ting [VerfasserIn]

Links:

Volltext

Themen:

3D printing
Biocompatible Materials
Bone integration
C6V6S92N3C
Immune regulation
Journal Article
Porous structure
S38N85C5G0
Triply periodic minimal surface
Zirconia ceramic
Zirconium
Zirconium oxide

Anmerkungen:

Date Completed 29.03.2024

Date Revised 29.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1021/acsami.3c18799

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369908414