Promoting Photocatalytic Direct C-H Difluoromethylation of Heterocycles using Synergistic Dual-Active-Centered Covalent Organic Frameworks

Difluoromethylation reactions are increasingly important for the creation of fluorine-containing heterocycles, which are core groups in a diverse range of biologically and pharmacologically active ingredients. Ideally, this typically challenging reaction could be performed photocatalytically under mild conditions. To achieve this separation of redox processes would be required for the efficient generation of difluoromethyl radicals and the reduction of oxygen. A covalent organic framework photocatalytic material was, therefore, designed with dual reactive centers. Here, anthracene was used as a reduction site and benzothiadiazole was used as an oxidation site, distributed in a tristyryl triazine framework. Efficient charge separation was ensured by the superior electron-donating and -accepting abilities of the dual centers, creating long-lived photogenerated electron-hole pairs. Photocatalytic difluoromethylation of 16 compounds with high yields and remarkable functional group tolerance was demonstrated; compounds included bioactive molecules such as xanthine and uracil. The structure-function relationship of the dual-active-center photocatalyst was investigated through electron spin resonance, femtosecond transient absorption spectroscopy, and density functional theory calculations.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - year:2024

Enthalten in:

Journal of the American Chemical Society - (2024) vom: 18. März

Sprache:

Englisch

Beteiligte Personen:

Li, Sizhe [VerfasserIn]
Wei, Wenxin [VerfasserIn]
Chi, Kai [VerfasserIn]
Ferguson, Calum T J [VerfasserIn]
Zhao, Yan [VerfasserIn]
Zhang, Kai A I [VerfasserIn]

Links:

Volltext

Themen:

Journal Article

Anmerkungen:

Date Revised 19.03.2024

published: Print-Electronic

Citation Status Publisher

doi:

10.1021/jacs.3c12880

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369899563