A dynamic model of growth phase of bio-conversion of methane to polyhydroxybutyrate using dynamic flux balance analysis

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature..

Biological conversion of waste methane to biodegradable plastics is a way of reducing their production cost. This study addresses the computational modeling of the growth phase reactor of the process of polyhydroxybutyrate production. The model was used for investigating the effect of gas recycling and inlet gas retention time on the reactor performance. The model was run by the use of a genome-scale metabolic network of Methylocystis hirsuta in a dynamic flux balance analysis framework. The reactor has been modeled for two separate feeding scenarios: a pure methane feed and a biogas feed. The mass transfer coefficient parameter was predicted as a function of superficial gas velocities by the regression of data from published experiments. The results show an increase of removal efficiency by 38% and biomass concentration by 2.8 g/L with the increase of gas recycle ratio from 0 to 30 at the empty bed residence time of 60  min.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:47

Enthalten in:

Bioprocess and biosystems engineering - 47(2024), 4 vom: 30. Apr., Seite 463-474

Sprache:

Englisch

Beteiligte Personen:

Nasershariat, Mohadeseh [VerfasserIn]
Pishvaie, Mahmoud Reza [VerfasserIn]
Boozarjomehry, Ramin Bozorgmehry [VerfasserIn]
Waldherr, Steffen [VerfasserIn]

Links:

Volltext

Themen:

Dynamic flux balance analysis
Genome-scale metabolic network
Journal Article
Methane
Methylocystis hirsuta
OP0UW79H66
Polyhydroxybutyrate
Polyhydroxybutyrates

Anmerkungen:

Date Completed 10.04.2024

Date Revised 10.04.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1007/s00449-024-02966-w

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369816846