Hypoxia leads to gill endoplasmic reticulum stress and disruption of mitochondrial homeostasis in grass carp (Ctenopharyngodon idella) : Mitigation effect of thiamine

Copyright © 2024 Elsevier B.V. All rights reserved..

Hypoxia in water environment is one of the important problems faced by intensive aquaculture. Under hypoxia stress, the effects of dietary thiamine were investigated on grass carp gill tissue damage and their mechanisms. Six thiamine diets with different thiamine levels (0.22, 0.43, 0.73, 1.03, 1.33 and 1.63 mg/kg) were fed grass carp (Ctenopharyngodon idella) for 63 days. Then, 96-hour hypoxia stress test was conducted. This study described that thiamine enhanced the growth performance of adult grass carp and ameliorated nutritional status of thiamine (pyruvic acid, glucose, lactic acid and transketolase). Additionally, thiamine alleviated the deterioration of blood parameters [glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), glucose, cortisol, lactic dehydrogenase (LDH), erythrocyte fragility, and red blood cell count (RBC count)] caused by hypoxia stress, and reduced reactive oxygen species (ROS) content and oxidative damage to the gills. In addition, thiamine alleviated endoplasmic reticulum stress in the gills, which may be related to its inhibition of RNA-dependent protein kinase-like ER kinase (PERK)/eukaryotic translation initiation factor-2α (eIF2α)/activating transcription factor4 (ATF4), inositol-requiring enzyme 1 (IRE1)/X-Box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6) pathways. Furthermore, thiamine maintaining mitochondrial dynamics balance was probably related to promoting mitochondrial fusion and inhibiting mitochondrial fission, and inhibiting mitophagy may involve PTEN induced putative kinase 1 (PINK1)/Parkin-dependent pathway and hypoxia-inducible factor (HIF)-Bcl-2 adenovirus E1B 19 kDa interacting protein 3 (BNIP3) pathway. In summary, thiamine alleviated hypoxia stress in fish gills, which may be related to reducing endoplasmic reticulum stress, regulating mitochondrial dynamics balance and reducing mitophagy. The thiamine requirement for optimum growth [percent weight gain (PWG)] of adult grass carp was estimated to be 0.81 mg/kg diet. Based on the index of anti-hypoxia stress (ROS content in gill), the thiamine requirement for adult grass carp was estimated to be 1.32 mg/kg diet.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:469

Enthalten in:

Journal of hazardous materials - 469(2024) vom: 05. Apr., Seite 134005

Sprache:

Englisch

Beteiligte Personen:

Huang, Ke-Jing [VerfasserIn]
Feng, Lin [VerfasserIn]
Wu, Pei [VerfasserIn]
Liu, Yang [VerfasserIn]
Zhang, Lu [VerfasserIn]
Mi, Hai-Feng [VerfasserIn]
Zhou, Xiao-Qiu [VerfasserIn]
Jiang, Wei-Dan [VerfasserIn]

Links:

Volltext

Themen:

Endoplasmic reticulum stress
Fish Proteins
Glucose
Hypoxia stress
IY9XDZ35W2
Journal Article
Mitochondrial fusion-fission
Mitophagy
Oxidative damage
Reactive Oxygen Species
Thiamine

Anmerkungen:

Date Completed 08.04.2024

Date Revised 08.04.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.jhazmat.2024.134005

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369743520