Loss of PA28γ exacerbates imbalanced differentiation of bone marrow stromal cells during bone formation and bone healing in mice

© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society for Bone and Mineral Research. All rights reserved. For permissions, please email: journals.permissionsoup.com..

Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/β-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/β-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:39

Enthalten in:

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research - 39(2024), 3 vom: 19. Apr., Seite 326-340

Sprache:

Englisch

Beteiligte Personen:

Chen, Qian [VerfasserIn]
Wu, ZuPing [VerfasserIn]
Shi, YuJie [VerfasserIn]
Li, ZaiYe [VerfasserIn]
Yang, JiaKang [VerfasserIn]
Qu, MoYuan [VerfasserIn]
Zhang, ShiYu [VerfasserIn]
Wang, Zheng [VerfasserIn]
Ji, Ning [VerfasserIn]
Li, Jing [VerfasserIn]
Shen, YingQiang [VerfasserIn]
Xie, Liang [VerfasserIn]
Chen, Qianming [VerfasserIn]

Links:

Volltext

Themen:

β-catenin
Autoantigens
Beta Catenin
Bone defect healing
Bone formation
EC 3.4.25.1
Journal Article
Ki antigen
Lipids
Osteogenic differentiation
Proteasome Endopeptidase Complex
Proteasome activator subunit 3
Wnt

Anmerkungen:

Date Completed 22.04.2024

Date Revised 22.04.2024

published: Print

Citation Status MEDLINE

doi:

10.1093/jbmr/zjae012

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369675398