Functional roles of CD26/DPP4 in lipopolysaccharide-induced lung injury

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated inflammation and increased permeability of lung microvascular cells. CD26/dipeptidyl peptidase-4 (DPP4) is a type II membrane protein that is expressed in several cell types and mediates multiple pleiotropic effects. We previously reported that DPP4 inhibition by sitagliptin attenuates lipopolysaccharide (LPS)-induced lung injury in mice. The current study characterized the functional role of CD26/DPP4 expression in LPS-induced lung injury in mice, isolated alveolar macrophages, and cultured lung endothelial cells. In LPS-induced lung injury, inflammatory responses [bronchoalveolar lavage fluid (BALF) neutrophil numbers and several proinflammatory cytokine levels] were attenuated in Dpp4 knockout (Dpp4 KO) mice. However, multiple assays of alveolar capillary permeability were similar between the Dpp4 KO and wild-type mice. TNF-α and IL-6 production was suppressed in alveolar macrophages isolated from Dpp4 KO mice. In contrast, in cultured mouse lung microvascular endothelial cells (MLMVECs), reduction in CD26/DPP4 expression by siRNA resulted in greater ICAM-1 and IL-6 expression after LPS stimulation. Moreover, the LPS-induced vascular monolayer permeability in vitro was higher in MLMVECs treated with Dpp4 siRNA, suggesting that CD26/DPP4 plays a protective role in endothelial barrier function. In summary, this study demonstrated that genetic deficiency of Dpp4 attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential functional roles of CD26/DPP4 expression in resident cellular components of the lung. CD26/DPP4 may be a potential therapeutic target for ARDS and warrants further exploration to precisely identify the multiple functional effects of CD26/DPP4 in ARDS pathophysiology.NEW & NOTEWORTHY We aimed to clarify the functional roles of CD26/DPP4 in ARDS pathophysiology using Dpp4-deficient mice and siRNA reduction techniques in cultured lung cells. Our results suggest that CD26/DPP4 expression plays a proinflammatory role in alveolar macrophages while also playing a protective role in the endothelial barrier. Dpp4 genetic deficiency attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential roles of CD26/DPP4 expression in the resident cellular components of the lung.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:326

Enthalten in:

American journal of physiology. Lung cellular and molecular physiology - 326(2024), 5 vom: 01. Apr., Seite L562-L573

Sprache:

Englisch

Beteiligte Personen:

Sato, Shun [VerfasserIn]
Kawasaki, Takeshi [VerfasserIn]
Hatano, Ryo [VerfasserIn]
Koyanagi, Yu [VerfasserIn]
Takahashi, Yukiko [VerfasserIn]
Ohnuma, Kei [VerfasserIn]
Morimoto, Chikao [VerfasserIn]
Dudek, Steven M [VerfasserIn]
Tatsumi, Koichiro [VerfasserIn]
Suzuki, Takuji [VerfasserIn]

Links:

Volltext

Themen:

126547-89-5
Acute respiratory distress syndrome
CD26
DPP4
Dipeptidyl Peptidase 4
Dpp4 protein, mouse
EC 3.4.14.5
Intercellular Adhesion Molecule-1
Interleukin-6
Journal Article
LPS
Lipopolysaccharides
Lung injury
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Tumor Necrosis Factor-alpha

Anmerkungen:

Date Completed 24.04.2024

Date Revised 25.04.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1152/ajplung.00392.2022

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM369593545